Cargando…

Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models

Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest in contemporary cancer research. We present FLORAL, an open-source computational tool to perform scalable log-ratio lasso regression modeling and microbial feature selection for continuous,...

Descripción completa

Detalles Bibliográficos
Autores principales: Fei, Teng, Funnell, Tyler, Waters, Nicholas R., Raj, Sandeep S., Devlin, Sean M., Dai, Anqi, Miltiadous, Oriana, Shouval, Roni, Meng, Lv, Peled, Jonathan U., Ponce, Doris M., Perales, Miguel-Angel, Gönen, Mithat, van den Brink, Marcel R. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187229/
https://www.ncbi.nlm.nih.gov/pubmed/37205350
http://dx.doi.org/10.1101/2023.05.02.538599
_version_ 1785042706496487424
author Fei, Teng
Funnell, Tyler
Waters, Nicholas R.
Raj, Sandeep S.
Devlin, Sean M.
Dai, Anqi
Miltiadous, Oriana
Shouval, Roni
Meng, Lv
Peled, Jonathan U.
Ponce, Doris M.
Perales, Miguel-Angel
Gönen, Mithat
van den Brink, Marcel R. M.
author_facet Fei, Teng
Funnell, Tyler
Waters, Nicholas R.
Raj, Sandeep S.
Devlin, Sean M.
Dai, Anqi
Miltiadous, Oriana
Shouval, Roni
Meng, Lv
Peled, Jonathan U.
Ponce, Doris M.
Perales, Miguel-Angel
Gönen, Mithat
van den Brink, Marcel R. M.
author_sort Fei, Teng
collection PubMed
description Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest in contemporary cancer research. We present FLORAL, an open-source computational tool to perform scalable log-ratio lasso regression modeling and microbial feature selection for continuous, binary, time-to-event, and competing risk outcomes. The proposed method adapts the augmented Lagrangian algorithm for a zero-sum constraint optimization problem while enabling a two-stage screening process for extended false-positive control. In extensive simulation studies, FLORAL achieved consistently better false-positive control compared to other lasso-based approaches and better variable selection [Formula: see text] score over popular differential abundance approaches. We demonstrate the practical utility of the proposed tool with a real data application on an allogeneic hematopoietic-cell transplantation cohort. The R package is available at https://github.com/vdblab/FLORAL.
format Online
Article
Text
id pubmed-10187229
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-101872292023-05-17 Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models Fei, Teng Funnell, Tyler Waters, Nicholas R. Raj, Sandeep S. Devlin, Sean M. Dai, Anqi Miltiadous, Oriana Shouval, Roni Meng, Lv Peled, Jonathan U. Ponce, Doris M. Perales, Miguel-Angel Gönen, Mithat van den Brink, Marcel R. M. bioRxiv Article Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest in contemporary cancer research. We present FLORAL, an open-source computational tool to perform scalable log-ratio lasso regression modeling and microbial feature selection for continuous, binary, time-to-event, and competing risk outcomes. The proposed method adapts the augmented Lagrangian algorithm for a zero-sum constraint optimization problem while enabling a two-stage screening process for extended false-positive control. In extensive simulation studies, FLORAL achieved consistently better false-positive control compared to other lasso-based approaches and better variable selection [Formula: see text] score over popular differential abundance approaches. We demonstrate the practical utility of the proposed tool with a real data application on an allogeneic hematopoietic-cell transplantation cohort. The R package is available at https://github.com/vdblab/FLORAL. Cold Spring Harbor Laboratory 2023-05-03 /pmc/articles/PMC10187229/ /pubmed/37205350 http://dx.doi.org/10.1101/2023.05.02.538599 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Fei, Teng
Funnell, Tyler
Waters, Nicholas R.
Raj, Sandeep S.
Devlin, Sean M.
Dai, Anqi
Miltiadous, Oriana
Shouval, Roni
Meng, Lv
Peled, Jonathan U.
Ponce, Doris M.
Perales, Miguel-Angel
Gönen, Mithat
van den Brink, Marcel R. M.
Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models
title Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models
title_full Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models
title_fullStr Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models
title_full_unstemmed Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models
title_short Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models
title_sort scalable log-ratio lasso regression enhances microbiome feature selection for predictive models
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187229/
https://www.ncbi.nlm.nih.gov/pubmed/37205350
http://dx.doi.org/10.1101/2023.05.02.538599
work_keys_str_mv AT feiteng scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT funnelltyler scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT watersnicholasr scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT rajsandeeps scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT devlinseanm scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT daianqi scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT miltiadousoriana scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT shouvalroni scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT menglv scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT peledjonathanu scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT poncedorism scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT peralesmiguelangel scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT gonenmithat scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels
AT vandenbrinkmarcelrm scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels