Cargando…
Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models
Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest in contemporary cancer research. We present FLORAL, an open-source computational tool to perform scalable log-ratio lasso regression modeling and microbial feature selection for continuous,...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187229/ https://www.ncbi.nlm.nih.gov/pubmed/37205350 http://dx.doi.org/10.1101/2023.05.02.538599 |
_version_ | 1785042706496487424 |
---|---|
author | Fei, Teng Funnell, Tyler Waters, Nicholas R. Raj, Sandeep S. Devlin, Sean M. Dai, Anqi Miltiadous, Oriana Shouval, Roni Meng, Lv Peled, Jonathan U. Ponce, Doris M. Perales, Miguel-Angel Gönen, Mithat van den Brink, Marcel R. M. |
author_facet | Fei, Teng Funnell, Tyler Waters, Nicholas R. Raj, Sandeep S. Devlin, Sean M. Dai, Anqi Miltiadous, Oriana Shouval, Roni Meng, Lv Peled, Jonathan U. Ponce, Doris M. Perales, Miguel-Angel Gönen, Mithat van den Brink, Marcel R. M. |
author_sort | Fei, Teng |
collection | PubMed |
description | Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest in contemporary cancer research. We present FLORAL, an open-source computational tool to perform scalable log-ratio lasso regression modeling and microbial feature selection for continuous, binary, time-to-event, and competing risk outcomes. The proposed method adapts the augmented Lagrangian algorithm for a zero-sum constraint optimization problem while enabling a two-stage screening process for extended false-positive control. In extensive simulation studies, FLORAL achieved consistently better false-positive control compared to other lasso-based approaches and better variable selection [Formula: see text] score over popular differential abundance approaches. We demonstrate the practical utility of the proposed tool with a real data application on an allogeneic hematopoietic-cell transplantation cohort. The R package is available at https://github.com/vdblab/FLORAL. |
format | Online Article Text |
id | pubmed-10187229 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-101872292023-05-17 Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models Fei, Teng Funnell, Tyler Waters, Nicholas R. Raj, Sandeep S. Devlin, Sean M. Dai, Anqi Miltiadous, Oriana Shouval, Roni Meng, Lv Peled, Jonathan U. Ponce, Doris M. Perales, Miguel-Angel Gönen, Mithat van den Brink, Marcel R. M. bioRxiv Article Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest in contemporary cancer research. We present FLORAL, an open-source computational tool to perform scalable log-ratio lasso regression modeling and microbial feature selection for continuous, binary, time-to-event, and competing risk outcomes. The proposed method adapts the augmented Lagrangian algorithm for a zero-sum constraint optimization problem while enabling a two-stage screening process for extended false-positive control. In extensive simulation studies, FLORAL achieved consistently better false-positive control compared to other lasso-based approaches and better variable selection [Formula: see text] score over popular differential abundance approaches. We demonstrate the practical utility of the proposed tool with a real data application on an allogeneic hematopoietic-cell transplantation cohort. The R package is available at https://github.com/vdblab/FLORAL. Cold Spring Harbor Laboratory 2023-05-03 /pmc/articles/PMC10187229/ /pubmed/37205350 http://dx.doi.org/10.1101/2023.05.02.538599 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Fei, Teng Funnell, Tyler Waters, Nicholas R. Raj, Sandeep S. Devlin, Sean M. Dai, Anqi Miltiadous, Oriana Shouval, Roni Meng, Lv Peled, Jonathan U. Ponce, Doris M. Perales, Miguel-Angel Gönen, Mithat van den Brink, Marcel R. M. Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models |
title | Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models |
title_full | Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models |
title_fullStr | Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models |
title_full_unstemmed | Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models |
title_short | Scalable Log-ratio Lasso Regression Enhances Microbiome Feature Selection for Predictive Models |
title_sort | scalable log-ratio lasso regression enhances microbiome feature selection for predictive models |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187229/ https://www.ncbi.nlm.nih.gov/pubmed/37205350 http://dx.doi.org/10.1101/2023.05.02.538599 |
work_keys_str_mv | AT feiteng scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT funnelltyler scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT watersnicholasr scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT rajsandeeps scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT devlinseanm scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT daianqi scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT miltiadousoriana scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT shouvalroni scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT menglv scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT peledjonathanu scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT poncedorism scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT peralesmiguelangel scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT gonenmithat scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels AT vandenbrinkmarcelrm scalablelogratiolassoregressionenhancesmicrobiomefeatureselectionforpredictivemodels |