Cargando…
Genetic control of the error-prone repair of a chromosomal double-strand break with 5’ overhangs in yeast
A targeted double-strand break introduced into the genome of Saccharomyces cerevisiae is repaired by the relatively error-prone nonhomologous-end joining (NHEJ) pathway when homologous recombination is not an option. A ZFN cleavage site was inserted out-of-frame into the LYS2 locus of a haploid yeas...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187297/ https://www.ncbi.nlm.nih.gov/pubmed/37205473 http://dx.doi.org/10.1101/2023.05.04.539391 |
Sumario: | A targeted double-strand break introduced into the genome of Saccharomyces cerevisiae is repaired by the relatively error-prone nonhomologous-end joining (NHEJ) pathway when homologous recombination is not an option. A ZFN cleavage site was inserted out-of-frame into the LYS2 locus of a haploid yeast strain to study the genetic control of NHEJ when the ends contain 5’ overhangs. Repair events that destroyed the cleavage site were identified either as Lys(+) colonies on selective medium or as surviving colonies on rich medium. Junction sequences in Lys(+) events solely reflected NHEJ and were influenced by the nuclease activity of Mre11 as well as by the presence/absence of the NHEJ-specific polymerase Pol4 and the translesion-synthesis DNA polymerases Pol [Formula: see text] and Pol [Formula: see text]. Although most NHEJ events were dependent on Pol4, a 29-bp deletion with endpoints in 3-bp repeats was an exception. The Pol4-independent deletion required TLS polymerases as well as the exonuclease activity of the replicative Pol d DNA polymerase. Survivors were equally split between NHEJ events and 1 kb or 11 kb deletions that reflected microhomology-mediated end joining (MMEJ). MMEJ events required the processive resection activity of Exo1/Sgs1, but there unexpectedly was no dependence on the Rad1-Rad10 endonuclease for the removal of presumptive 3’ tails. Finally, NHEJ was more efficient in non-growing than in growing cells and was most efficient in G0 cells. These studies provide novel insight into the flexibility and complexity of error-prone DSB repair in yeast. |
---|