Cargando…
A Comprehensive Corpus Callosum Segmentation Tool for Detecting Callosal Abnormalities and Genetic Associations from Multi Contrast MRIs
Structural alterations of the midsagittal corpus callosum (midCC) have been associated with a wide range of brain disorders. The midCC is visible on most MRI contrasts and in many acquisitions with a limited field-of-view. Here, we present an automated tool for segmenting and assessing the shape of...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187361/ https://www.ncbi.nlm.nih.gov/pubmed/37205260 |
Sumario: | Structural alterations of the midsagittal corpus callosum (midCC) have been associated with a wide range of brain disorders. The midCC is visible on most MRI contrasts and in many acquisitions with a limited field-of-view. Here, we present an automated tool for segmenting and assessing the shape of the midCC from T1w, T2w, and FLAIR images. We train a UNet on images from multiple public datasets to obtain midCC segmentations. A quality control algorithm is also built-in, trained on the midCC shape features. We calculate intraclass correlations (ICC) and average Dice scores in a test-retest dataset to assess segmentation reliability. We test our segmentation on poor quality and partial brain scans. We highlight the biological significance of our extracted features using data from over 40,000 individuals from the UK Biobank; we classify clinically defined shape abnormalities and perform genetic analyses. |
---|