Cargando…
Reconstructing seen images from human brain activity via guided stochastic search
Visual reconstruction algorithms are an interpretive tool that map brain activity to pixels. Past reconstruction algorithms employed brute-force search through a massive library to select candidate images that, when passed through an encoding model, accurately predict brain activity. Here, we use co...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187366/ https://www.ncbi.nlm.nih.gov/pubmed/37205268 |
Sumario: | Visual reconstruction algorithms are an interpretive tool that map brain activity to pixels. Past reconstruction algorithms employed brute-force search through a massive library to select candidate images that, when passed through an encoding model, accurately predict brain activity. Here, we use conditional generative diffusion models to extend and improve this search-based strategy. We decode a semantic descriptor from human brain activity (7T fMRI) in voxels across most of visual cortex, then use a diffusion model to sample a small library of images conditioned on this descriptor. We pass each sample through an encoding model, select the images that best predict brain activity, and then use these images to seed another library. We show that this process converges on high-quality reconstructions by refining low-level image details while preserving semantic content across iterations. Interestingly, the time-to-convergence differs systematically across visual cortex, suggesting a succinct new way to measure the diversity of representations across visual brain areas. |
---|