Cargando…
Reconstructing seen images from human brain activity via guided stochastic search
Visual reconstruction algorithms are an interpretive tool that map brain activity to pixels. Past reconstruction algorithms employed brute-force search through a massive library to select candidate images that, when passed through an encoding model, accurately predict brain activity. Here, we use co...
Autores principales: | Kneeland, Reese, Ojeda, Jordyn, St-Yves, Ghislain, Naselaris, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187366/ https://www.ncbi.nlm.nih.gov/pubmed/37205268 |
Ejemplares similares
-
Second Sight: Using brain-optimized encoding models to align image distributions with human brain activity
por: Kneeland, Reese, et al.
Publicado: (2023) -
Brain-optimized deep neural network models of human visual areas learn non-hierarchical representations
por: St-Yves, Ghislain, et al.
Publicado: (2023) -
NeuroGen: Activation optimized image synthesis for discovery neuroscience
por: Gu, Zijin, et al.
Publicado: (2022) -
Reconstruction of pulse noisy images via stochastic resonance
por: Han, Jing, et al.
Publicado: (2015) -
Pulse noise-hidden image reconstruction and visualization via stochastic resonance
por: Sun, Qibing, et al.
Publicado: (2016)