Cargando…
Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet
Advances in single-cell and -nucleus transcriptomics have enabled generation of increasingly large-scale datasets from hundreds of subjects and millions of cells. These studies promise to give unprecedented insight into the cell type specific biology of human disease. Yet performing differential exp...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187426/ https://www.ncbi.nlm.nih.gov/pubmed/37205331 http://dx.doi.org/10.21203/rs.3.rs-2705625/v1 |
_version_ | 1785042735275704320 |
---|---|
author | Hoffman, Gabriel E. Lee, Donghoon Bendl, Jaroslav Fnu, Prashant Hong, Aram Casey, Clara Alvia, Marcela Shao, Zhiping Argyriou, Stathis Therrien, Karen Venkatesh, Sanan Voloudakis, Georgios Haroutunian, Vahram Fullard, John F. Roussos, Panos |
author_facet | Hoffman, Gabriel E. Lee, Donghoon Bendl, Jaroslav Fnu, Prashant Hong, Aram Casey, Clara Alvia, Marcela Shao, Zhiping Argyriou, Stathis Therrien, Karen Venkatesh, Sanan Voloudakis, Georgios Haroutunian, Vahram Fullard, John F. Roussos, Panos |
author_sort | Hoffman, Gabriel E. |
collection | PubMed |
description | Advances in single-cell and -nucleus transcriptomics have enabled generation of increasingly large-scale datasets from hundreds of subjects and millions of cells. These studies promise to give unprecedented insight into the cell type specific biology of human disease. Yet performing differential expression analyses across subjects remains difficult due to challenges in statistical modeling of these complex studies and scaling analyses to large datasets. Our open-source R package dreamlet (DiseaseNeurogenomics.github.io/dreamlet) uses a pseudobulk approach based on precision-weighted linear mixed models to identify genes differentially expressed with traits across subjects for each cell cluster. Designed for data from large cohorts, dreamlet is substantially faster and uses less memory than existing workflows, while supporting complex statistical models and controlling the false positive rate. We demonstrate computational and statistical performance on published datasets, and a novel dataset of 1.4M single nuclei from postmortem brains of 150 Alzheimer’s disease cases and 149 controls. |
format | Online Article Text |
id | pubmed-10187426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Journal Experts |
record_format | MEDLINE/PubMed |
spelling | pubmed-101874262023-05-17 Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet Hoffman, Gabriel E. Lee, Donghoon Bendl, Jaroslav Fnu, Prashant Hong, Aram Casey, Clara Alvia, Marcela Shao, Zhiping Argyriou, Stathis Therrien, Karen Venkatesh, Sanan Voloudakis, Georgios Haroutunian, Vahram Fullard, John F. Roussos, Panos Res Sq Article Advances in single-cell and -nucleus transcriptomics have enabled generation of increasingly large-scale datasets from hundreds of subjects and millions of cells. These studies promise to give unprecedented insight into the cell type specific biology of human disease. Yet performing differential expression analyses across subjects remains difficult due to challenges in statistical modeling of these complex studies and scaling analyses to large datasets. Our open-source R package dreamlet (DiseaseNeurogenomics.github.io/dreamlet) uses a pseudobulk approach based on precision-weighted linear mixed models to identify genes differentially expressed with traits across subjects for each cell cluster. Designed for data from large cohorts, dreamlet is substantially faster and uses less memory than existing workflows, while supporting complex statistical models and controlling the false positive rate. We demonstrate computational and statistical performance on published datasets, and a novel dataset of 1.4M single nuclei from postmortem brains of 150 Alzheimer’s disease cases and 149 controls. American Journal Experts 2023-05-02 /pmc/articles/PMC10187426/ /pubmed/37205331 http://dx.doi.org/10.21203/rs.3.rs-2705625/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Hoffman, Gabriel E. Lee, Donghoon Bendl, Jaroslav Fnu, Prashant Hong, Aram Casey, Clara Alvia, Marcela Shao, Zhiping Argyriou, Stathis Therrien, Karen Venkatesh, Sanan Voloudakis, Georgios Haroutunian, Vahram Fullard, John F. Roussos, Panos Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet |
title | Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet |
title_full | Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet |
title_fullStr | Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet |
title_full_unstemmed | Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet |
title_short | Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet |
title_sort | efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187426/ https://www.ncbi.nlm.nih.gov/pubmed/37205331 http://dx.doi.org/10.21203/rs.3.rs-2705625/v1 |
work_keys_str_mv | AT hoffmangabriele efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT leedonghoon efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT bendljaroslav efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT fnuprashant efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT hongaram efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT caseyclara efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT alviamarcela efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT shaozhiping efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT argyrioustathis efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT therrienkaren efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT venkateshsanan efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT voloudakisgeorgios efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT haroutunianvahram efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT fullardjohnf efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet AT roussospanos efficientdifferentialexpressionanalysisoflargescalesinglecelltranscriptomicsdatausingdreamlet |