Cargando…
Effect of Contact Lens Solutions in Stabilizing the Activity of Tear Lysozyme
PURPOSE: Interactions between tear proteins and the interfaces of contact lenses can be complex and can influence contact lens wear success. Tear proteins, including lysozyme, function to maintain the balance of ocular surface homeostasis, as evidenced by the effects of its conformation relative to...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187650/ https://www.ncbi.nlm.nih.gov/pubmed/37205004 http://dx.doi.org/10.2147/OPTO.S404261 |
_version_ | 1785042775557799936 |
---|---|
author | Scheuer, Catherine A Barniak, Vicki L Phatak, Nitasha R Rah, Marjorie J Reindel, William |
author_facet | Scheuer, Catherine A Barniak, Vicki L Phatak, Nitasha R Rah, Marjorie J Reindel, William |
author_sort | Scheuer, Catherine A |
collection | PubMed |
description | PURPOSE: Interactions between tear proteins and the interfaces of contact lenses can be complex and can influence contact lens wear success. Tear proteins, including lysozyme, function to maintain the balance of ocular surface homeostasis, as evidenced by the effects of its conformation relative to stabilizing the tear film and its potential impact on corneal epithelial cells. Contact lens manufacturers include components in lens care and blister package solutions to help stabilize the tear film and preserve homeostasis. This in vitro study was performed to evaluate the ability of daily disposable contact lens package solutions to stabilize lysozyme and preserve its native conformation under denaturing conditions. METHODS: Lysozyme was added to contact lens solutions sampled from kalifilcon A, etafilcon A, senofilcon A, narafilcon A, nelfilcon A, verofilcon A, delefilcon A, somofilcon A, and stenfilcon A blister packages, then mixed with the protein denaturant sodium lauryl sulfate. Lysozyme activity was evaluated by adding test solutions to a suspension of Micrococcus luteus. Native lysozyme lyses the Micrococcus luteus cell wall, which decreases suspension turbidity. Stabilization of lysozyme activity was determined by comparing suspension turbidity before and after exposure to test solutions. RESULTS: Lysozyme stabilization was 90.7% for kalifilcon A solution, a statistically significant improvement (p < 0.05) compared to phosphate buffered saline (PBS, negative control). No significant improvement was observed with any other contact lens solution (all lysozyme stabilization < 5.00%). CONCLUSION: The representative tear protein lysozyme was significantly more stable in the novel kalifilcon A contact lens solution containing multiple moisturizers and osmoprotectants than in PBS or other daily disposable contact lens solutions. The lysozyme activity assay provides mechanistic evidence that the kalifilcon A contact lens solution can stabilize proteins under conditions that typically denature proteins, which may contribute to maintaining ocular surface homeostasis. |
format | Online Article Text |
id | pubmed-10187650 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-101876502023-05-17 Effect of Contact Lens Solutions in Stabilizing the Activity of Tear Lysozyme Scheuer, Catherine A Barniak, Vicki L Phatak, Nitasha R Rah, Marjorie J Reindel, William Clin Optom (Auckl) Original Research PURPOSE: Interactions between tear proteins and the interfaces of contact lenses can be complex and can influence contact lens wear success. Tear proteins, including lysozyme, function to maintain the balance of ocular surface homeostasis, as evidenced by the effects of its conformation relative to stabilizing the tear film and its potential impact on corneal epithelial cells. Contact lens manufacturers include components in lens care and blister package solutions to help stabilize the tear film and preserve homeostasis. This in vitro study was performed to evaluate the ability of daily disposable contact lens package solutions to stabilize lysozyme and preserve its native conformation under denaturing conditions. METHODS: Lysozyme was added to contact lens solutions sampled from kalifilcon A, etafilcon A, senofilcon A, narafilcon A, nelfilcon A, verofilcon A, delefilcon A, somofilcon A, and stenfilcon A blister packages, then mixed with the protein denaturant sodium lauryl sulfate. Lysozyme activity was evaluated by adding test solutions to a suspension of Micrococcus luteus. Native lysozyme lyses the Micrococcus luteus cell wall, which decreases suspension turbidity. Stabilization of lysozyme activity was determined by comparing suspension turbidity before and after exposure to test solutions. RESULTS: Lysozyme stabilization was 90.7% for kalifilcon A solution, a statistically significant improvement (p < 0.05) compared to phosphate buffered saline (PBS, negative control). No significant improvement was observed with any other contact lens solution (all lysozyme stabilization < 5.00%). CONCLUSION: The representative tear protein lysozyme was significantly more stable in the novel kalifilcon A contact lens solution containing multiple moisturizers and osmoprotectants than in PBS or other daily disposable contact lens solutions. The lysozyme activity assay provides mechanistic evidence that the kalifilcon A contact lens solution can stabilize proteins under conditions that typically denature proteins, which may contribute to maintaining ocular surface homeostasis. Dove 2023-05-12 /pmc/articles/PMC10187650/ /pubmed/37205004 http://dx.doi.org/10.2147/OPTO.S404261 Text en © 2023 Scheuer et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Scheuer, Catherine A Barniak, Vicki L Phatak, Nitasha R Rah, Marjorie J Reindel, William Effect of Contact Lens Solutions in Stabilizing the Activity of Tear Lysozyme |
title | Effect of Contact Lens Solutions in Stabilizing the Activity of Tear Lysozyme |
title_full | Effect of Contact Lens Solutions in Stabilizing the Activity of Tear Lysozyme |
title_fullStr | Effect of Contact Lens Solutions in Stabilizing the Activity of Tear Lysozyme |
title_full_unstemmed | Effect of Contact Lens Solutions in Stabilizing the Activity of Tear Lysozyme |
title_short | Effect of Contact Lens Solutions in Stabilizing the Activity of Tear Lysozyme |
title_sort | effect of contact lens solutions in stabilizing the activity of tear lysozyme |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187650/ https://www.ncbi.nlm.nih.gov/pubmed/37205004 http://dx.doi.org/10.2147/OPTO.S404261 |
work_keys_str_mv | AT scheuercatherinea effectofcontactlenssolutionsinstabilizingtheactivityoftearlysozyme AT barniakvickil effectofcontactlenssolutionsinstabilizingtheactivityoftearlysozyme AT phataknitashar effectofcontactlenssolutionsinstabilizingtheactivityoftearlysozyme AT rahmarjoriej effectofcontactlenssolutionsinstabilizingtheactivityoftearlysozyme AT reindelwilliam effectofcontactlenssolutionsinstabilizingtheactivityoftearlysozyme |