Cargando…
A new approach to COVID-19 data mining: A deep spatial–temporal prediction model based on tree structure for traffic revitalization index
The outbreak of the COVID-19 epidemic has had a huge impact on a global scale and its impact has covered almost all human industries. The Chinese government enacted a series of policies to restrict the transportation industry in order to slow the spread of the COVID-19 virus in early 2020. With the...
Autores principales: | Lv, Zhiqiang, Wang, Xiaotong, Cheng, Zesheng, Li, Jianbo, Li, Haoran, Xu, Zhihao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188195/ https://www.ncbi.nlm.nih.gov/pubmed/37251597 http://dx.doi.org/10.1016/j.datak.2023.102193 |
Ejemplares similares
-
Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalization index()
por: Lv, Zhiqiang, et al.
Publicado: (2021) -
A deep spatio-temporal meta-learning model for urban traffic revitalization index prediction in the COVID-19 pandemic
por: Wang, Yue, et al.
Publicado: (2022) -
A graph spatial-temporal model for predicting population density of key areas
por: Xu, Zhihao, et al.
Publicado: (2021) -
Rural Spatial Differentiation and Revitalization Approaches in China: A Case Study of Qingdao City
por: Cheng, Xiaohua, et al.
Publicado: (2022) -
Revit architecture
por: Alvarez Espinoza, J. Martín
Publicado: (2012)