Cargando…
A novel deep learning approach for typhoon-induced storm surge modeling through efficient emulation of wind and pressure fields
Modeling typhoon-induced storm surges requires 10-m wind and sea level pressure fields as forcings, commonly obtained using parametric models or a fully dynamical simulation by numerical weather prediction (NWP) models. The parametric models are generally less accurate than the full-physics models o...
Autores principales: | Mulia, Iyan E., Ueda, Naonori, Miyoshi, Takemasa, Iwamoto, Takumu, Heidarzadeh, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188603/ https://www.ncbi.nlm.nih.gov/pubmed/37193794 http://dx.doi.org/10.1038/s41598-023-35093-9 |
Ejemplares similares
-
Machine learning-based tsunami inundation prediction derived from offshore observations
por: Mulia, Iyan E., et al.
Publicado: (2022) -
Typhoon storm surge in the southeast Chinese mainland modulated by ENSO
por: Feng, Xingru, et al.
Publicado: (2021) -
Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf
por: Mori, Nobuhito, et al.
Publicado: (2014) -
East China Sea Storm Surge Modeling and Visualization System: The Typhoon Soulik Case
por: Deng, Zengan, et al.
Publicado: (2014) -
Joint Risk of Rainfall and Storm Surges during Typhoons in a Coastal City of Haidian Island, China
por: Xu, Hongshi, et al.
Publicado: (2018)