Cargando…
Improving video surveillance systems in banks using deep learning techniques
In the contemporary world, security and safety are significant concerns for any country that wants to succeed in tourism, attracting investors, and economics. Manually, guards monitoring 24/7 for robberies or crimes becomes an exhaustive task, and real-time response is essential and helpful for prev...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188611/ https://www.ncbi.nlm.nih.gov/pubmed/37193787 http://dx.doi.org/10.1038/s41598-023-35190-9 |
Sumario: | In the contemporary world, security and safety are significant concerns for any country that wants to succeed in tourism, attracting investors, and economics. Manually, guards monitoring 24/7 for robberies or crimes becomes an exhaustive task, and real-time response is essential and helpful for preventing armed robberies at banks, casinos, houses, and ATMs. This paper presents a study based on real-time object detection systems for weapons auto-detection in video surveillance systems. We propose an early weapon detection framework using state-of-the-art, real-time object detection systems such as YOLO and SSD (Single Shot Multi-Box Detector). In addition, we considered closely reducing the number of false alarms in order to employ the model in real-life applications. The model is suitable for indoor surveillance cameras in banks, supermarkets, malls, gas stations, and so forth. The model can be employed as a precautionary system to prevent robberies by implying the model in outdoor surveillance cameras. |
---|