Cargando…
End-to-end dialogue structure parsing on multi-floor dialogue based on multi-task learning
A multi-floor dialogue consists of multiple sets of dialogue participants, each conversing within their own floor. In the multi-floor dialogue, at least one multi-communicating member who is a participant of multiple floors and coordinates each to achieve a shared dialogue goal. The structure of suc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188960/ https://www.ncbi.nlm.nih.gov/pubmed/37207047 http://dx.doi.org/10.3389/frobt.2023.949600 |
Sumario: | A multi-floor dialogue consists of multiple sets of dialogue participants, each conversing within their own floor. In the multi-floor dialogue, at least one multi-communicating member who is a participant of multiple floors and coordinates each to achieve a shared dialogue goal. The structure of such dialogues can be complex, involving intentional structure and relations that are within or across floors. In this study, We proposed a neural dialogue structure parser with an attention mechanism that applies multi-task learning to automatically identify the dialogue structure of multi-floor dialogues in a collaborative robot navigation domain. Furthermore, we propose to use dialogue response prediction as an auxiliary objective of the multi-floor dialogue structure parser to enhance the consistency of the multi-floor dialogue structure parsing. Our experimental results show that our proposed model improved the dialogue structure parsing performance more than conventional models in multi-floor dialogue. |
---|