Cargando…
Priming therapy by targeting enhancer-initiated pathways in patient-derived pancreatic cancer cells
BACKGROUND: Systems biology leveraging multi-OMICs technologies, is rapidly advancing development of precision therapies and matching patients to targeted therapies, leading to improved responses. A new pillar of precision oncology lies in the power of chemogenomics to discover drugs that sensitizes...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189188/ https://www.ncbi.nlm.nih.gov/pubmed/37148583 http://dx.doi.org/10.1016/j.ebiom.2023.104602 |
_version_ | 1785043031999643648 |
---|---|
author | Fraunhoffer, Nicolas A. Moreno Vega, Aura I. Abuelafia, Analía Meilerman Morvan, Marie Lebarbier, Emilie Mary-Huard, Tristan Zimmermann, Michael Lomberk, Gwen Urrutia, Raul Dusetti, Nelson Blum, Yuna Nicolle, Remy Iovanna, Juan |
author_facet | Fraunhoffer, Nicolas A. Moreno Vega, Aura I. Abuelafia, Analía Meilerman Morvan, Marie Lebarbier, Emilie Mary-Huard, Tristan Zimmermann, Michael Lomberk, Gwen Urrutia, Raul Dusetti, Nelson Blum, Yuna Nicolle, Remy Iovanna, Juan |
author_sort | Fraunhoffer, Nicolas A. |
collection | PubMed |
description | BACKGROUND: Systems biology leveraging multi-OMICs technologies, is rapidly advancing development of precision therapies and matching patients to targeted therapies, leading to improved responses. A new pillar of precision oncology lies in the power of chemogenomics to discover drugs that sensitizes malignant cells to other therapies. Here, we test a chemogenomic approach using epigenomic inhibitors (epidrugs) to reset patterns of gene expression driving the malignant behavior of pancreatic tumors. METHODS: We tested a targeted library of ten epidrugs targeting regulators of enhancers and super-enhancers on reprogramming gene expression networks in seventeen patient-derived primary pancreatic cancer cell cultures (PDPCCs), of both basal and classical subtypes. We subsequently evaluated the ability of these epidrugs to sensitize pancreatic cancer cells to five chemotherapeutic drugs that are clinically used for this malignancy. FINDINGS: To comprehend the impact of epidrug priming at the molecular level, we evaluated the effect of each epidrugs at the transcriptomic level of PDPCCs. The activating epidrugs showed a higher number of upregulated genes than the repressive epidrugs (χ(2) test p-value <0.01). Furthermore, we developed a classifier using the baseline transcriptome of epidrug-primed-chemosensitized PDPCCs to predict the best epidrug-priming regime to a given chemotherapy. Six signatures with a significant association with the chemosensitization centroid (R ≤ −0.80; p-value < 0.01) were identified and validated in a subset of PDPCCs. INTERPRETATION: We conclude that targeting enhancer-initiated pathways in patient-derived primary cells, represents a promising approach for developing new therapies for human pancreatic cancer. FUNDING: This work was supported by 10.13039/501100001809INCa (Grants number 2018-078 to ND and 2018- 079 to JI), 10.13039/501100006331Canceropole PACA (ND), Amidex Foundation (ND), and 10.13039/501100001677INSERM (JI). |
format | Online Article Text |
id | pubmed-10189188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-101891882023-05-18 Priming therapy by targeting enhancer-initiated pathways in patient-derived pancreatic cancer cells Fraunhoffer, Nicolas A. Moreno Vega, Aura I. Abuelafia, Analía Meilerman Morvan, Marie Lebarbier, Emilie Mary-Huard, Tristan Zimmermann, Michael Lomberk, Gwen Urrutia, Raul Dusetti, Nelson Blum, Yuna Nicolle, Remy Iovanna, Juan eBioMedicine Articles BACKGROUND: Systems biology leveraging multi-OMICs technologies, is rapidly advancing development of precision therapies and matching patients to targeted therapies, leading to improved responses. A new pillar of precision oncology lies in the power of chemogenomics to discover drugs that sensitizes malignant cells to other therapies. Here, we test a chemogenomic approach using epigenomic inhibitors (epidrugs) to reset patterns of gene expression driving the malignant behavior of pancreatic tumors. METHODS: We tested a targeted library of ten epidrugs targeting regulators of enhancers and super-enhancers on reprogramming gene expression networks in seventeen patient-derived primary pancreatic cancer cell cultures (PDPCCs), of both basal and classical subtypes. We subsequently evaluated the ability of these epidrugs to sensitize pancreatic cancer cells to five chemotherapeutic drugs that are clinically used for this malignancy. FINDINGS: To comprehend the impact of epidrug priming at the molecular level, we evaluated the effect of each epidrugs at the transcriptomic level of PDPCCs. The activating epidrugs showed a higher number of upregulated genes than the repressive epidrugs (χ(2) test p-value <0.01). Furthermore, we developed a classifier using the baseline transcriptome of epidrug-primed-chemosensitized PDPCCs to predict the best epidrug-priming regime to a given chemotherapy. Six signatures with a significant association with the chemosensitization centroid (R ≤ −0.80; p-value < 0.01) were identified and validated in a subset of PDPCCs. INTERPRETATION: We conclude that targeting enhancer-initiated pathways in patient-derived primary cells, represents a promising approach for developing new therapies for human pancreatic cancer. FUNDING: This work was supported by 10.13039/501100001809INCa (Grants number 2018-078 to ND and 2018- 079 to JI), 10.13039/501100006331Canceropole PACA (ND), Amidex Foundation (ND), and 10.13039/501100001677INSERM (JI). Elsevier 2023-05-04 /pmc/articles/PMC10189188/ /pubmed/37148583 http://dx.doi.org/10.1016/j.ebiom.2023.104602 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Articles Fraunhoffer, Nicolas A. Moreno Vega, Aura I. Abuelafia, Analía Meilerman Morvan, Marie Lebarbier, Emilie Mary-Huard, Tristan Zimmermann, Michael Lomberk, Gwen Urrutia, Raul Dusetti, Nelson Blum, Yuna Nicolle, Remy Iovanna, Juan Priming therapy by targeting enhancer-initiated pathways in patient-derived pancreatic cancer cells |
title | Priming therapy by targeting enhancer-initiated pathways in patient-derived pancreatic cancer cells |
title_full | Priming therapy by targeting enhancer-initiated pathways in patient-derived pancreatic cancer cells |
title_fullStr | Priming therapy by targeting enhancer-initiated pathways in patient-derived pancreatic cancer cells |
title_full_unstemmed | Priming therapy by targeting enhancer-initiated pathways in patient-derived pancreatic cancer cells |
title_short | Priming therapy by targeting enhancer-initiated pathways in patient-derived pancreatic cancer cells |
title_sort | priming therapy by targeting enhancer-initiated pathways in patient-derived pancreatic cancer cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189188/ https://www.ncbi.nlm.nih.gov/pubmed/37148583 http://dx.doi.org/10.1016/j.ebiom.2023.104602 |
work_keys_str_mv | AT fraunhoffernicolasa primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells AT morenovegaaurai primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells AT abuelafiaanaliameilerman primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells AT morvanmarie primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells AT lebarbieremilie primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells AT maryhuardtristan primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells AT zimmermannmichael primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells AT lomberkgwen primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells AT urrutiaraul primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells AT dusettinelson primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells AT blumyuna primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells AT nicolleremy primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells AT iovannajuan primingtherapybytargetingenhancerinitiatedpathwaysinpatientderivedpancreaticcancercells |