Cargando…
Adaptive LASSO estimation for functional hidden dynamic geostatistical models
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hidden dynamic geostatistical models (f-HDGM). These models employ a classic mixed-effect regression structure with embedded spatiotemporal dynamics to model georeferenced data observ...
Autores principales: | Maranzano, Paolo, Otto, Philipp, Fassò, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189237/ https://www.ncbi.nlm.nih.gov/pubmed/37362848 http://dx.doi.org/10.1007/s00477-023-02466-5 |
Ejemplares similares
-
Spatiotemporal variable selection and air quality impact assessment of COVID-19 lockdown
por: Fassò, Alessandro, et al.
Publicado: (2022) -
Statistical Modeling of the Early-Stage Impact of a New Traffic Policy in Milan, Italy
por: Maranzano, Paolo, et al.
Publicado: (2020) -
The prediction of live weight of hair goats through penalized regression methods: LASSO and adaptive LASSO
por: Akkol, Suna
Publicado: (2018) -
Geostatistics: modeling spatial uncertainy
por: Chiles, Jean-Paul
Publicado: (1999) -
Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India
por: Wu, Ruohan, et al.
Publicado: (2020)