Cargando…
Machine learning of atomic force microscopy images of organic solar cells
The bulk heterojunction structures of organic photovoltaics (OPVs) have been overlooked in their machine learning (ML) approach despite their presumably significant impact on power conversion efficiency (PCE). In this study, we examined the use of atomic force microscopy (AFM) images to construct an...
Autores principales: | Kobayashi, Yasuhito, Miyake, Yuta, Ishiwari, Fumitaka, Ishiwata, Shintaro, Saeki, Akinori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189247/ https://www.ncbi.nlm.nih.gov/pubmed/37207099 http://dx.doi.org/10.1039/d3ra02492j |
Ejemplares similares
-
Quantifying nanoscale forces using machine learning in dynamic atomic force microscopy
por: Chandrashekar, Abhilash, et al.
Publicado: (2022) -
Exploration of Solution-Processed Bi/Sb Solar Cells
by Automated Robotic Experiments Equipped with Microwave Conductivity
por: Nishikawa, Chisato, et al.
Publicado: (2023) -
Immunoactivity of self-assembled antibodies investigated by atomic force microscopy
por: Kominami, Hiroaki, et al.
Publicado: (2018) -
Characterizing aliphatic moieties in hydrocarbons with atomic force microscopy
por: Schuler, Bruno, et al.
Publicado: (2017) -
Evaluating the efficacy of the anticancer drug cetuximab by atomic force microscopy
por: Zhang, Qingrong, et al.
Publicado: (2018)