Cargando…
Learning effects in visual grading assessment of model-based reconstruction algorithms in abdominal Computed Tomography
OBJECTIVES: Images reconstructed with higher strengths of iterative reconstruction algorithms may impair radiologists’ subjective perception and diagnostic performance due to changes in the amplitude of different spatial frequencies of noise. The aim of the present study was to ascertain if radiolog...
Autores principales: | Kataria, Bharti, Öman, Jenny, Sandborg, Michael, Smedby, Örjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189366/ https://www.ncbi.nlm.nih.gov/pubmed/37207049 http://dx.doi.org/10.1016/j.ejro.2023.100490 |
Ejemplares similares
-
Assessment of image quality in abdominal CT: potential dose reduction with model-based iterative reconstruction
por: Kataria, Bharti, et al.
Publicado: (2018) -
Image quality and pathology assessment in CT Urography: when is the low-dose series sufficient?
por: Kataria, Bharti, et al.
Publicado: (2019) -
IMAGE QUALITY AND POTENTIAL DOSE REDUCTION USING ADVANCED MODELED ITERATIVE RECONSTRUCTION (ADMIRE) IN ABDOMINAL CT - A REVIEW
por: Kataria, B, et al.
Publicado: (2021) -
Regression models for analyzing radiological visual grading studies – an empirical comparison
por: Saffari, S. Ehsan, et al.
Publicado: (2015) -
Deep learning image reconstruction algorithms in low-dose radiation abdominal computed tomography: assessment of image quality and lesion diagnostic confidence
por: Yang, Chun, et al.
Publicado: (2023)