Cargando…
Gellan gum spongy‐like hydrogel‐based dual antibiotic therapy for infected diabetic wounds
Diabetic foot infection (DFI) is an important cause of morbidity and mortality. Antibiotics are fundamental for treating DFI, although bacterial biofilm formation and associated pathophysiology can reduce their effectiveness. Additionally, antibiotics are often associated with adverse reactions. Hen...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189450/ https://www.ncbi.nlm.nih.gov/pubmed/37206216 http://dx.doi.org/10.1002/btm2.10504 |
_version_ | 1785043089888378880 |
---|---|
author | Mendes, Ana Isabel Fraga, Alexandra Gabriel Peixoto, Maria João Aroso, Ivo Longatto‐Filho, Adhemar Marques, Alexandra Pinto Pedrosa, Jorge |
author_facet | Mendes, Ana Isabel Fraga, Alexandra Gabriel Peixoto, Maria João Aroso, Ivo Longatto‐Filho, Adhemar Marques, Alexandra Pinto Pedrosa, Jorge |
author_sort | Mendes, Ana Isabel |
collection | PubMed |
description | Diabetic foot infection (DFI) is an important cause of morbidity and mortality. Antibiotics are fundamental for treating DFI, although bacterial biofilm formation and associated pathophysiology can reduce their effectiveness. Additionally, antibiotics are often associated with adverse reactions. Hence, improved antibiotic therapies are required for safer and effective DFI management. On this regard, drug delivery systems (DDSs) constitute a promising strategy. We propose a gellan gum (GG)‐based spongy‐like hydrogel as a topical and controlled DDS of vancomycin and clindamycin, for an improved dual antibiotic therapy against methicillin‐resistant Staphylococcus aureus (MRSA) in DFI. The developed DDS presents suitable features for topical application, while promoting the controlled release of both antibiotics, resulting in a significant reduction of in vitro antibiotic‐associated cytotoxicity without compromising antibacterial activity. The therapeutic potential of this DDS was further corroborated in vivo, in a diabetic mouse model of MRSA‐infected wounds. A single DDS administration allowed a significant bacterial burden reduction in a short period of time, without exacerbating host inflammatory response. Taken together, these results suggest that the proposed DDS represents a promising strategy for the topical treatment of DFI, potentially overcoming limitations associated with systemic antibiotic administration and minimizing the frequency of administration. |
format | Online Article Text |
id | pubmed-10189450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101894502023-05-18 Gellan gum spongy‐like hydrogel‐based dual antibiotic therapy for infected diabetic wounds Mendes, Ana Isabel Fraga, Alexandra Gabriel Peixoto, Maria João Aroso, Ivo Longatto‐Filho, Adhemar Marques, Alexandra Pinto Pedrosa, Jorge Bioeng Transl Med Research Articles Diabetic foot infection (DFI) is an important cause of morbidity and mortality. Antibiotics are fundamental for treating DFI, although bacterial biofilm formation and associated pathophysiology can reduce their effectiveness. Additionally, antibiotics are often associated with adverse reactions. Hence, improved antibiotic therapies are required for safer and effective DFI management. On this regard, drug delivery systems (DDSs) constitute a promising strategy. We propose a gellan gum (GG)‐based spongy‐like hydrogel as a topical and controlled DDS of vancomycin and clindamycin, for an improved dual antibiotic therapy against methicillin‐resistant Staphylococcus aureus (MRSA) in DFI. The developed DDS presents suitable features for topical application, while promoting the controlled release of both antibiotics, resulting in a significant reduction of in vitro antibiotic‐associated cytotoxicity without compromising antibacterial activity. The therapeutic potential of this DDS was further corroborated in vivo, in a diabetic mouse model of MRSA‐infected wounds. A single DDS administration allowed a significant bacterial burden reduction in a short period of time, without exacerbating host inflammatory response. Taken together, these results suggest that the proposed DDS represents a promising strategy for the topical treatment of DFI, potentially overcoming limitations associated with systemic antibiotic administration and minimizing the frequency of administration. John Wiley & Sons, Inc. 2023-03-21 /pmc/articles/PMC10189450/ /pubmed/37206216 http://dx.doi.org/10.1002/btm2.10504 Text en © 2023 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Mendes, Ana Isabel Fraga, Alexandra Gabriel Peixoto, Maria João Aroso, Ivo Longatto‐Filho, Adhemar Marques, Alexandra Pinto Pedrosa, Jorge Gellan gum spongy‐like hydrogel‐based dual antibiotic therapy for infected diabetic wounds |
title | Gellan gum spongy‐like hydrogel‐based dual antibiotic therapy for infected diabetic wounds |
title_full | Gellan gum spongy‐like hydrogel‐based dual antibiotic therapy for infected diabetic wounds |
title_fullStr | Gellan gum spongy‐like hydrogel‐based dual antibiotic therapy for infected diabetic wounds |
title_full_unstemmed | Gellan gum spongy‐like hydrogel‐based dual antibiotic therapy for infected diabetic wounds |
title_short | Gellan gum spongy‐like hydrogel‐based dual antibiotic therapy for infected diabetic wounds |
title_sort | gellan gum spongy‐like hydrogel‐based dual antibiotic therapy for infected diabetic wounds |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189450/ https://www.ncbi.nlm.nih.gov/pubmed/37206216 http://dx.doi.org/10.1002/btm2.10504 |
work_keys_str_mv | AT mendesanaisabel gellangumspongylikehydrogelbaseddualantibiotictherapyforinfecteddiabeticwounds AT fragaalexandragabriel gellangumspongylikehydrogelbaseddualantibiotictherapyforinfecteddiabeticwounds AT peixotomariajoao gellangumspongylikehydrogelbaseddualantibiotictherapyforinfecteddiabeticwounds AT arosoivo gellangumspongylikehydrogelbaseddualantibiotictherapyforinfecteddiabeticwounds AT longattofilhoadhemar gellangumspongylikehydrogelbaseddualantibiotictherapyforinfecteddiabeticwounds AT marquesalexandrapinto gellangumspongylikehydrogelbaseddualantibiotictherapyforinfecteddiabeticwounds AT pedrosajorge gellangumspongylikehydrogelbaseddualantibiotictherapyforinfecteddiabeticwounds |