Cargando…
The Good, The Bad, and The Perplexing: Structural Alerts and Read-Across for Predicting Skin Sensitization Using Human Data
[Image: see text] In our earlier work (Golden et al., 2021), we showed 70–80% accuracies for several skin sensitization computational tools using human data. Here, we expanded the data set using the NICEATM human skin sensitization database to create a final data set of 1355 discrete chemicals (larg...
Autores principales: | Golden, Emily, Ukaegbu, Daniel C., Ranslow, Peter, Brown, Robert H., Hartung, Thomas, Maertens, Alexandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189792/ https://www.ncbi.nlm.nih.gov/pubmed/37126467 http://dx.doi.org/10.1021/acs.chemrestox.2c00383 |
Ejemplares similares
-
Perplexities
Publicado: (1851) -
t(4) report: Toward Good Read-Across Practice (GRAP) Guidance
por: Ball, Nicholas, et al.
Publicado: (2016) -
The Physician in Perplexity
Publicado: (1898) -
Linked data for the perplexed librarian
por: Carlson, Scott, et al.
Publicado: (2020) -
Analysis of Publically Available Skin Sensitization Data from REACH Registrations 2008–2014
por: Luechtefeld, Thomas, et al.
Publicado: (2016)