Cargando…

A focus on the use of real-world datasets for yield prediction

The prediction of reaction yields remains a challenging task for machine learning (ML), given the vast search spaces and absence of robust training data. Wiest, Chawla et al. (https://doi.org/10.1039/D2SC06041H) show that a deep learning algorithm performs well on high-throughput experimentation dat...

Descripción completa

Detalles Bibliográficos
Autores principales: Bustillo, Latimah, Rodrigues, Tiago
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189867/
https://www.ncbi.nlm.nih.gov/pubmed/37206402
http://dx.doi.org/10.1039/d3sc90069j
Descripción
Sumario:The prediction of reaction yields remains a challenging task for machine learning (ML), given the vast search spaces and absence of robust training data. Wiest, Chawla et al. (https://doi.org/10.1039/D2SC06041H) show that a deep learning algorithm performs well on high-throughput experimentation data but surprisingly poorly on real-world, historical data from a pharmaceutical company. The result suggests that there is considerable room for improvement when coupling ML to electronic laboratory notebook data.