Cargando…
Drug repurposing and prediction of multiple interaction types via graph embedding
BACKGROUND: Finding drugs that can interact with a specific target to induce a desired therapeutic outcome is key deliverable in drug discovery for targeted treatment. Therefore, both identifying new drug–target links, as well as delineating the type of drug interaction, are important in drug repurp...
Autores principales: | Amiri Souri, E., Chenoweth, A., Karagiannis, S. N., Tsoka, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190044/ https://www.ncbi.nlm.nih.gov/pubmed/37193964 http://dx.doi.org/10.1186/s12859-023-05317-w |
Ejemplares similares
-
Novel drug-target interactions via link prediction and network embedding
por: Amiri Souri, E., et al.
Publicado: (2022) -
Cancer Grade Model: a multi-gene machine learning-based risk classification for improving prognosis in breast cancer
por: Amiri Souri, E., et al.
Publicado: (2021) -
Drug-Drug Interaction Predictions via Knowledge Graph and Text Embedding: Instrument Validation Study
por: Wang, Meng, et al.
Publicado: (2021) -
Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding
por: Islam, Md Kamrul, et al.
Publicado: (2023) -
A Literature-Based Knowledge Graph Embedding Method for Identifying Drug Repurposing Opportunities in Rare Diseases
por: Sosa, Daniel N., et al.
Publicado: (2020)