Cargando…

Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data

Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Geras, Agnieszka, Darvish Shafighi, Shadi, Domżał, Kacper, Filipiuk, Igor, Rączkowska, Alicja, Szymczak, Paulina, Toosi, Hosein, Kaczmarek, Leszek, Koperski, Łukasz, Lagergren, Jens, Nowis, Dominika, Szczurek, Ewa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190053/
https://www.ncbi.nlm.nih.gov/pubmed/37198601
http://dx.doi.org/10.1186/s13059-023-02951-8
_version_ 1785043208001028096
author Geras, Agnieszka
Darvish Shafighi, Shadi
Domżał, Kacper
Filipiuk, Igor
Rączkowska, Alicja
Szymczak, Paulina
Toosi, Hosein
Kaczmarek, Leszek
Koperski, Łukasz
Lagergren, Jens
Nowis, Dominika
Szczurek, Ewa
author_facet Geras, Agnieszka
Darvish Shafighi, Shadi
Domżał, Kacper
Filipiuk, Igor
Rączkowska, Alicja
Szymczak, Paulina
Toosi, Hosein
Kaczmarek, Leszek
Koperski, Łukasz
Lagergren, Jens
Nowis, Dominika
Szczurek, Ewa
author_sort Geras, Agnieszka
collection PubMed
description Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we propose an innovative probabilistic model, Celloscope, that utilizes established prior knowledge on marker genes for cell type deconvolution from spatial transcriptomics data. Celloscope outperforms other methods on simulated data, successfully indicates known brain structures and spatially distinguishes between inhibitory and excitatory neuron types based in mouse brain tissue, and dissects large heterogeneity of immune infiltrate composition in prostate gland tissue. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02951-8.
format Online
Article
Text
id pubmed-10190053
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-101900532023-05-18 Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data Geras, Agnieszka Darvish Shafighi, Shadi Domżał, Kacper Filipiuk, Igor Rączkowska, Alicja Szymczak, Paulina Toosi, Hosein Kaczmarek, Leszek Koperski, Łukasz Lagergren, Jens Nowis, Dominika Szczurek, Ewa Genome Biol Method Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we propose an innovative probabilistic model, Celloscope, that utilizes established prior knowledge on marker genes for cell type deconvolution from spatial transcriptomics data. Celloscope outperforms other methods on simulated data, successfully indicates known brain structures and spatially distinguishes between inhibitory and excitatory neuron types based in mouse brain tissue, and dissects large heterogeneity of immune infiltrate composition in prostate gland tissue. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02951-8. BioMed Central 2023-05-17 /pmc/articles/PMC10190053/ /pubmed/37198601 http://dx.doi.org/10.1186/s13059-023-02951-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Method
Geras, Agnieszka
Darvish Shafighi, Shadi
Domżał, Kacper
Filipiuk, Igor
Rączkowska, Alicja
Szymczak, Paulina
Toosi, Hosein
Kaczmarek, Leszek
Koperski, Łukasz
Lagergren, Jens
Nowis, Dominika
Szczurek, Ewa
Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
title Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
title_full Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
title_fullStr Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
title_full_unstemmed Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
title_short Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
title_sort celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190053/
https://www.ncbi.nlm.nih.gov/pubmed/37198601
http://dx.doi.org/10.1186/s13059-023-02951-8
work_keys_str_mv AT gerasagnieszka celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata
AT darvishshafighishadi celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata
AT domzałkacper celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata
AT filipiukigor celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata
AT raczkowskaalicja celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata
AT szymczakpaulina celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata
AT toosihosein celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata
AT kaczmarekleszek celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata
AT koperskiłukasz celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata
AT lagergrenjens celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata
AT nowisdominika celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata
AT szczurekewa celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata