Cargando…
Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we pr...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190053/ https://www.ncbi.nlm.nih.gov/pubmed/37198601 http://dx.doi.org/10.1186/s13059-023-02951-8 |
_version_ | 1785043208001028096 |
---|---|
author | Geras, Agnieszka Darvish Shafighi, Shadi Domżał, Kacper Filipiuk, Igor Rączkowska, Alicja Szymczak, Paulina Toosi, Hosein Kaczmarek, Leszek Koperski, Łukasz Lagergren, Jens Nowis, Dominika Szczurek, Ewa |
author_facet | Geras, Agnieszka Darvish Shafighi, Shadi Domżał, Kacper Filipiuk, Igor Rączkowska, Alicja Szymczak, Paulina Toosi, Hosein Kaczmarek, Leszek Koperski, Łukasz Lagergren, Jens Nowis, Dominika Szczurek, Ewa |
author_sort | Geras, Agnieszka |
collection | PubMed |
description | Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we propose an innovative probabilistic model, Celloscope, that utilizes established prior knowledge on marker genes for cell type deconvolution from spatial transcriptomics data. Celloscope outperforms other methods on simulated data, successfully indicates known brain structures and spatially distinguishes between inhibitory and excitatory neuron types based in mouse brain tissue, and dissects large heterogeneity of immune infiltrate composition in prostate gland tissue. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02951-8. |
format | Online Article Text |
id | pubmed-10190053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-101900532023-05-18 Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data Geras, Agnieszka Darvish Shafighi, Shadi Domżał, Kacper Filipiuk, Igor Rączkowska, Alicja Szymczak, Paulina Toosi, Hosein Kaczmarek, Leszek Koperski, Łukasz Lagergren, Jens Nowis, Dominika Szczurek, Ewa Genome Biol Method Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we propose an innovative probabilistic model, Celloscope, that utilizes established prior knowledge on marker genes for cell type deconvolution from spatial transcriptomics data. Celloscope outperforms other methods on simulated data, successfully indicates known brain structures and spatially distinguishes between inhibitory and excitatory neuron types based in mouse brain tissue, and dissects large heterogeneity of immune infiltrate composition in prostate gland tissue. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02951-8. BioMed Central 2023-05-17 /pmc/articles/PMC10190053/ /pubmed/37198601 http://dx.doi.org/10.1186/s13059-023-02951-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Method Geras, Agnieszka Darvish Shafighi, Shadi Domżał, Kacper Filipiuk, Igor Rączkowska, Alicja Szymczak, Paulina Toosi, Hosein Kaczmarek, Leszek Koperski, Łukasz Lagergren, Jens Nowis, Dominika Szczurek, Ewa Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data |
title | Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data |
title_full | Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data |
title_fullStr | Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data |
title_full_unstemmed | Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data |
title_short | Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data |
title_sort | celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190053/ https://www.ncbi.nlm.nih.gov/pubmed/37198601 http://dx.doi.org/10.1186/s13059-023-02951-8 |
work_keys_str_mv | AT gerasagnieszka celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata AT darvishshafighishadi celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata AT domzałkacper celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata AT filipiukigor celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata AT raczkowskaalicja celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata AT szymczakpaulina celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata AT toosihosein celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata AT kaczmarekleszek celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata AT koperskiłukasz celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata AT lagergrenjens celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata AT nowisdominika celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata AT szczurekewa celloscopeaprobabilisticmodelformarkergenedrivencelltypedeconvolutioninspatialtranscriptomicsdata |