Cargando…

A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis

High‐entropy (HE) metal chalcogenides are a class of materials that have great potential in applications such as thermoelectrics and electrocatalysis. Layered 2D transition‐metal dichalcogenides (TMDCs) are a sub‐class of high entropy metal chalcogenides that have received little attention to date a...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Jie, Elgendy, Amr, Cai, Rongsheng, Buckingham, Mark A., Papaderakis, Athanasios A., de Latour, Hugo, Hazeldine, Kerry, Whitehead, George F. S., Alam, Firoz, Smith, Charles T., Binks, David J., Walton, Alex, Skelton, Jonathan M., Dryfe, Robert A. W., Haigh, Sarah J., Lewis, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190663/
https://www.ncbi.nlm.nih.gov/pubmed/36951493
http://dx.doi.org/10.1002/advs.202204488
_version_ 1785043321770475520
author Qu, Jie
Elgendy, Amr
Cai, Rongsheng
Buckingham, Mark A.
Papaderakis, Athanasios A.
de Latour, Hugo
Hazeldine, Kerry
Whitehead, George F. S.
Alam, Firoz
Smith, Charles T.
Binks, David J.
Walton, Alex
Skelton, Jonathan M.
Dryfe, Robert A. W.
Haigh, Sarah J.
Lewis, David J.
author_facet Qu, Jie
Elgendy, Amr
Cai, Rongsheng
Buckingham, Mark A.
Papaderakis, Athanasios A.
de Latour, Hugo
Hazeldine, Kerry
Whitehead, George F. S.
Alam, Firoz
Smith, Charles T.
Binks, David J.
Walton, Alex
Skelton, Jonathan M.
Dryfe, Robert A. W.
Haigh, Sarah J.
Lewis, David J.
author_sort Qu, Jie
collection PubMed
description High‐entropy (HE) metal chalcogenides are a class of materials that have great potential in applications such as thermoelectrics and electrocatalysis. Layered 2D transition‐metal dichalcogenides (TMDCs) are a sub‐class of high entropy metal chalcogenides that have received little attention to date as their preparation currently involves complicated, energy‐intensive, or hazardous synthetic steps. To address this, a low‐temperature (500 °C) and rapid (1 h) single source precursor approach is successfully adopted to synthesize the hexernary high‐entropy metal disulfide (MoWReMnCr)S(2). (MoWReMnCr)S(2) powders are characterized by powder X‐ray diffraction (pXRD) and Raman spectroscopy, which confirmed that the material is comprised predominantly of a hexagonal phase. The surface oxidation states and elemental compositions are studied by X‐ray photoelectron spectroscopy (XPS) whilst the bulk morphology and elemental stoichiometry with spatial distribution is determined by scanning electron microscopy (SEM) with elemental mapping information acquired from energy‐dispersive X‐ray (EDX) spectroscopy. The bulk, layered material is subsequently exfoliated to ultra‐thin, several‐layer 2D nanosheets by liquid‐phase exfoliation (LPE). The resulting few‐layer HE (MoWReMnCr)S(2) nanosheets are found to contain a homogeneous elemental distribution of metals at the nanoscale by high angle annular dark field‐scanning transmission electron microscopy (HAADF‐STEM) with EDX mapping. Finally, (MoWReMnCr)S(2) is demonstrated as a hydrogen evolution electrocatalyst and compared to 2H‐MoS(2) synthesized using the molecular precursor approach. (MoWReMnCr)S(2) with 20% w/w of high‐conductivity carbon black displays a low overpotential of 229 mV in 0.5 M  H(2)SO(4) to reach a current density of 10 mA cm(−2), which is much lower than the overpotential of 362 mV for MoS(2). From density functional theory calculations, it is hypothesised that the enhanced catalytic activity is due to activation of the basal plane upon incorporation of other elements into the 2H‐MoS(2) structure, in particular, the first row TMs Cr and Mn.
format Online
Article
Text
id pubmed-10190663
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-101906632023-05-18 A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis Qu, Jie Elgendy, Amr Cai, Rongsheng Buckingham, Mark A. Papaderakis, Athanasios A. de Latour, Hugo Hazeldine, Kerry Whitehead, George F. S. Alam, Firoz Smith, Charles T. Binks, David J. Walton, Alex Skelton, Jonathan M. Dryfe, Robert A. W. Haigh, Sarah J. Lewis, David J. Adv Sci (Weinh) Research Articles High‐entropy (HE) metal chalcogenides are a class of materials that have great potential in applications such as thermoelectrics and electrocatalysis. Layered 2D transition‐metal dichalcogenides (TMDCs) are a sub‐class of high entropy metal chalcogenides that have received little attention to date as their preparation currently involves complicated, energy‐intensive, or hazardous synthetic steps. To address this, a low‐temperature (500 °C) and rapid (1 h) single source precursor approach is successfully adopted to synthesize the hexernary high‐entropy metal disulfide (MoWReMnCr)S(2). (MoWReMnCr)S(2) powders are characterized by powder X‐ray diffraction (pXRD) and Raman spectroscopy, which confirmed that the material is comprised predominantly of a hexagonal phase. The surface oxidation states and elemental compositions are studied by X‐ray photoelectron spectroscopy (XPS) whilst the bulk morphology and elemental stoichiometry with spatial distribution is determined by scanning electron microscopy (SEM) with elemental mapping information acquired from energy‐dispersive X‐ray (EDX) spectroscopy. The bulk, layered material is subsequently exfoliated to ultra‐thin, several‐layer 2D nanosheets by liquid‐phase exfoliation (LPE). The resulting few‐layer HE (MoWReMnCr)S(2) nanosheets are found to contain a homogeneous elemental distribution of metals at the nanoscale by high angle annular dark field‐scanning transmission electron microscopy (HAADF‐STEM) with EDX mapping. Finally, (MoWReMnCr)S(2) is demonstrated as a hydrogen evolution electrocatalyst and compared to 2H‐MoS(2) synthesized using the molecular precursor approach. (MoWReMnCr)S(2) with 20% w/w of high‐conductivity carbon black displays a low overpotential of 229 mV in 0.5 M  H(2)SO(4) to reach a current density of 10 mA cm(−2), which is much lower than the overpotential of 362 mV for MoS(2). From density functional theory calculations, it is hypothesised that the enhanced catalytic activity is due to activation of the basal plane upon incorporation of other elements into the 2H‐MoS(2) structure, in particular, the first row TMs Cr and Mn. John Wiley and Sons Inc. 2023-03-23 /pmc/articles/PMC10190663/ /pubmed/36951493 http://dx.doi.org/10.1002/advs.202204488 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Qu, Jie
Elgendy, Amr
Cai, Rongsheng
Buckingham, Mark A.
Papaderakis, Athanasios A.
de Latour, Hugo
Hazeldine, Kerry
Whitehead, George F. S.
Alam, Firoz
Smith, Charles T.
Binks, David J.
Walton, Alex
Skelton, Jonathan M.
Dryfe, Robert A. W.
Haigh, Sarah J.
Lewis, David J.
A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis
title A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis
title_full A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis
title_fullStr A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis
title_full_unstemmed A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis
title_short A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis
title_sort low‐temperature synthetic route toward a high‐entropy 2d hexernary transition metal dichalcogenide for hydrogen evolution electrocatalysis
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190663/
https://www.ncbi.nlm.nih.gov/pubmed/36951493
http://dx.doi.org/10.1002/advs.202204488
work_keys_str_mv AT qujie alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT elgendyamr alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT cairongsheng alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT buckinghammarka alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT papaderakisathanasiosa alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT delatourhugo alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT hazeldinekerry alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT whiteheadgeorgefs alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT alamfiroz alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT smithcharlest alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT binksdavidj alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT waltonalex alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT skeltonjonathanm alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT dryferobertaw alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT haighsarahj alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT lewisdavidj alowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT qujie lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT elgendyamr lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT cairongsheng lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT buckinghammarka lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT papaderakisathanasiosa lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT delatourhugo lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT hazeldinekerry lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT whiteheadgeorgefs lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT alamfiroz lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT smithcharlest lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT binksdavidj lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT waltonalex lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT skeltonjonathanm lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT dryferobertaw lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT haighsarahj lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis
AT lewisdavidj lowtemperaturesyntheticroutetowardahighentropy2dhexernarytransitionmetaldichalcogenideforhydrogenevolutionelectrocatalysis