Cargando…
Rationally designed modular drug delivery platform based on intracellular peptide self‐assembly
Modulated molecular design‐based intracellular self‐assembly strategy has showed great potentiality in drug delivery, due to its assembling nature‐resulted optimized drug biodistribution and metabolism. The modular designing concept endows the delivery system multiple functions, such as, selectivity...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190849/ https://www.ncbi.nlm.nih.gov/pubmed/37323217 http://dx.doi.org/10.1002/EXP.20210153 |
Sumario: | Modulated molecular design‐based intracellular self‐assembly strategy has showed great potentiality in drug delivery, due to its assembling nature‐resulted optimized drug biodistribution and metabolism. The modular designing concept endows the delivery system multiple functions, such as, selectivity and universality to improve the pharmacokinetics of loaded drugs. However, the accurate controlling of the self‐assembling process in desired site to achieve optimal drug delivery is posed great challenges toward rational molecular design. Here, we fabricated a modulated drug‐delivery system (MDS) through intracellular peptide self‐assembly to realize effective drug delivery. MDS was designed based on modulated molecular designing strategy which contains five functional motifs and effectively transformed into fibrous nanostructures inside target cells by caspase3/7 hydrolysis directed in situ self‐assembly. The experimental studies and molecular simulations were carried out to evaluate the successful construction and delivering efficacy of MDS. According to the experimental results and molecular simulation analysis, the percentage of solvent‐exposed surface area of assembling modular (KLVFFAE), as well as its non‐covalent interaction between four other modules synergeticly decide the solubility of molecules. The weak intramolecular forces of the peptide back bone, such as, hydrogen bond, as well as multivalent interactions of the side chains such as, salt bridge and hydrophobic interaction both contribute to the self‐assembly of the molecules. The significant structural difference between delivering molecules optimize the system to adapt hydrophilic and hydrophobic drugs. Finally, the predicted drug delivery molecule specifically recognizes targeted cancer cell lines and self‐assembles to form fibers intracellularly, resulting in prolonged drug retention and accumulation. The regular prediction and rational molecular design will benefit the further construction and optimization of modulated drug delivery platform. |
---|