Cargando…
Prediction of concrete strength using response surface function modified depth neural network
In order to overcome the discreteness of input data and training data in deep neural network (DNN), the multivariable response surface function was used to revise input data and training data in this paper. The loss function based on the data on the response surface was derived, DNN based on multiva...
Autores principales: | Chen, Xiaohong, Zhang, Yueyue, Ge, Pei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191321/ https://www.ncbi.nlm.nih.gov/pubmed/37195915 http://dx.doi.org/10.1371/journal.pone.0285746 |
Ejemplares similares
-
Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network
por: Amar, Mouhamadou, et al.
Publicado: (2022) -
Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network
por: Bu, Liangtao, et al.
Publicado: (2021) -
Prediction of the Interface Shear Strength between Ultra-High-Performance Concrete and Normal Concrete Using Artificial Neural Networks
por: Du, Changqing, et al.
Publicado: (2021) -
Liquid Penetration Depth and Strength of Concretes Modified with Polymer Admixtures Under the Action of Crude-Oil Products
por: Gruszczyński, Maciej, et al.
Publicado: (2019) -
Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength
por: Chen, Ying, et al.
Publicado: (2018)