Cargando…

XRN2 suppresses aberrant entry of tRNA trailers into argonaute in humans and Arabidopsis

MicroRNAs (miRNAs) are a well-characterized class of small RNAs (sRNAs) that regulate gene expression post-transcriptionally. miRNAs function within a complex milieu of other sRNAs of similar size and abundance, with the best characterized being tRNA fragments or tRFs. The mechanism by which the RNA...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilson, Briana, Su, Zhangli, Kumar, Pankaj, Dutta, Anindya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191329/
https://www.ncbi.nlm.nih.gov/pubmed/37146074
http://dx.doi.org/10.1371/journal.pgen.1010755
Descripción
Sumario:MicroRNAs (miRNAs) are a well-characterized class of small RNAs (sRNAs) that regulate gene expression post-transcriptionally. miRNAs function within a complex milieu of other sRNAs of similar size and abundance, with the best characterized being tRNA fragments or tRFs. The mechanism by which the RNA-induced silencing complex (RISC) selects for specific sRNAs over others is not entirely understood in human cells. Several highly expressed tRNA trailers (tRF-1s) are strikingly similar to microRNAs in length but are generally excluded from the microRNA effector pathway. This exclusion provides a paradigm for identifying mechanisms of RISC selectivity. Here, we show that 5′ to 3′ exoribonuclease XRN2 contributes to human RISC selectivity. Although highly abundant, tRF-1s are highly unstable and degraded by XRN2 which blocks tRF-1 accumulation in RISC. We also find that XRN mediated degradation of tRF-1s and subsequent exclusion from RISC is conserved in plants. Our findings reveal a conserved mechanism that prevents aberrant entry of a class of highly produced sRNAs into Ago2.