Cargando…

Skin microbiome alterations in upper extremity secondary lymphedema

Lymphedema is a chronic condition that commonly occur from lymphatic injury following surgical resection of solid malignancies. While many studies have centered on the molecular and immune pathways that perpetuate lymphatic dysfunction, the role of the skin microbiome in lymphedema development remai...

Descripción completa

Detalles Bibliográficos
Autores principales: Campbell, Adana-Christine, Fei, Teng, Baik, Jung Eun, Park, Hyeung Ju, Shin, Jinyeon, Kuonqui, Kevin, Brown, Stav, Sarker, Ananta, Kataru, Raghu P., Mehrara, Babak J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191344/
https://www.ncbi.nlm.nih.gov/pubmed/37196005
http://dx.doi.org/10.1371/journal.pone.0283609
Descripción
Sumario:Lymphedema is a chronic condition that commonly occur from lymphatic injury following surgical resection of solid malignancies. While many studies have centered on the molecular and immune pathways that perpetuate lymphatic dysfunction, the role of the skin microbiome in lymphedema development remains unclear. In this study, skin swabs collected from normal and lymphedema forearms of 30 patients with unilateral upper extremity lymphedema were analyzed by 16S ribosomal RNA sequencing. Statistical models for microbiome data were utilized to correlate clinical variables with microbial profiles. Overall, 872 bacterial taxa were identified. There were no significant differences in microbial alpha diversity of the colonizing bacteria between normal and lymphedema skin samples (p = 0.25). Notably, for patients without a history of infection, a one-fold change in relative limb volume was significantly associated with a 0.58-unit increase in Bray-Curtis microbial distance between paired limbs (95%CI = 0.11,1.05, p = 0.02). Additionally, several genera, including Propionibacterium and Streptococcus, demonstrated high variability between paired samples. In summary, we demonstrate high compositional heterogeneity in the skin microbiome in upper extremity secondary lymphedema, supporting future studies into the role of host-microbe interactions on lymphedema pathophysiology.