Cargando…

Enthalpy and entropy synergistic regulation–based programmable DNA motifs for biosensing and information encryption

Deoxyribonucleic acid (DNA) provides a collection of intelligent tools for the development of information cryptography and biosensors. However, most conventional DNA regulation strategies rely solely on enthalpy regulation, which suffers from unpredictable stimuli-responsive performance and unsatisf...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Lin Lin, Li, Jin Ze, Wen, Mei, Xi, Dongmei, Zhu, Yanxi, Wei, Qin, Zhang, Xiao-Bing, Ke, Guoliang, Xia, Fan, Gao, Zhong Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191427/
https://www.ncbi.nlm.nih.gov/pubmed/37196083
http://dx.doi.org/10.1126/sciadv.adf5868
_version_ 1785043459369861120
author Zheng, Lin Lin
Li, Jin Ze
Wen, Mei
Xi, Dongmei
Zhu, Yanxi
Wei, Qin
Zhang, Xiao-Bing
Ke, Guoliang
Xia, Fan
Gao, Zhong Feng
author_facet Zheng, Lin Lin
Li, Jin Ze
Wen, Mei
Xi, Dongmei
Zhu, Yanxi
Wei, Qin
Zhang, Xiao-Bing
Ke, Guoliang
Xia, Fan
Gao, Zhong Feng
author_sort Zheng, Lin Lin
collection PubMed
description Deoxyribonucleic acid (DNA) provides a collection of intelligent tools for the development of information cryptography and biosensors. However, most conventional DNA regulation strategies rely solely on enthalpy regulation, which suffers from unpredictable stimuli-responsive performance and unsatisfactory accuracy due to relatively large energy fluctuations. Here, we report an enthalpy and entropy synergistic regulation–based pH-responsive A(+)/C DNA motif for programmable biosensing and information encryption. In the DNA motif, the variation in loop length alters entropic contribution, and the number of A(+)/C bases regulates enthalpy, which is verified through thermodynamic characterizations and analyses. On the basis of this straightforward strategy, the performances, such as pK(a), of the DNA motif can be precisely and predictably tuned. The DNA motifs are finally successfully applied for glucose biosensing and crypto-steganography systems, highlighting their potential in the field of biosensing and information encryption.
format Online
Article
Text
id pubmed-10191427
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-101914272023-05-18 Enthalpy and entropy synergistic regulation–based programmable DNA motifs for biosensing and information encryption Zheng, Lin Lin Li, Jin Ze Wen, Mei Xi, Dongmei Zhu, Yanxi Wei, Qin Zhang, Xiao-Bing Ke, Guoliang Xia, Fan Gao, Zhong Feng Sci Adv Physical and Materials Sciences Deoxyribonucleic acid (DNA) provides a collection of intelligent tools for the development of information cryptography and biosensors. However, most conventional DNA regulation strategies rely solely on enthalpy regulation, which suffers from unpredictable stimuli-responsive performance and unsatisfactory accuracy due to relatively large energy fluctuations. Here, we report an enthalpy and entropy synergistic regulation–based pH-responsive A(+)/C DNA motif for programmable biosensing and information encryption. In the DNA motif, the variation in loop length alters entropic contribution, and the number of A(+)/C bases regulates enthalpy, which is verified through thermodynamic characterizations and analyses. On the basis of this straightforward strategy, the performances, such as pK(a), of the DNA motif can be precisely and predictably tuned. The DNA motifs are finally successfully applied for glucose biosensing and crypto-steganography systems, highlighting their potential in the field of biosensing and information encryption. American Association for the Advancement of Science 2023-05-17 /pmc/articles/PMC10191427/ /pubmed/37196083 http://dx.doi.org/10.1126/sciadv.adf5868 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Zheng, Lin Lin
Li, Jin Ze
Wen, Mei
Xi, Dongmei
Zhu, Yanxi
Wei, Qin
Zhang, Xiao-Bing
Ke, Guoliang
Xia, Fan
Gao, Zhong Feng
Enthalpy and entropy synergistic regulation–based programmable DNA motifs for biosensing and information encryption
title Enthalpy and entropy synergistic regulation–based programmable DNA motifs for biosensing and information encryption
title_full Enthalpy and entropy synergistic regulation–based programmable DNA motifs for biosensing and information encryption
title_fullStr Enthalpy and entropy synergistic regulation–based programmable DNA motifs for biosensing and information encryption
title_full_unstemmed Enthalpy and entropy synergistic regulation–based programmable DNA motifs for biosensing and information encryption
title_short Enthalpy and entropy synergistic regulation–based programmable DNA motifs for biosensing and information encryption
title_sort enthalpy and entropy synergistic regulation–based programmable dna motifs for biosensing and information encryption
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191427/
https://www.ncbi.nlm.nih.gov/pubmed/37196083
http://dx.doi.org/10.1126/sciadv.adf5868
work_keys_str_mv AT zhenglinlin enthalpyandentropysynergisticregulationbasedprogrammablednamotifsforbiosensingandinformationencryption
AT lijinze enthalpyandentropysynergisticregulationbasedprogrammablednamotifsforbiosensingandinformationencryption
AT wenmei enthalpyandentropysynergisticregulationbasedprogrammablednamotifsforbiosensingandinformationencryption
AT xidongmei enthalpyandentropysynergisticregulationbasedprogrammablednamotifsforbiosensingandinformationencryption
AT zhuyanxi enthalpyandentropysynergisticregulationbasedprogrammablednamotifsforbiosensingandinformationencryption
AT weiqin enthalpyandentropysynergisticregulationbasedprogrammablednamotifsforbiosensingandinformationencryption
AT zhangxiaobing enthalpyandentropysynergisticregulationbasedprogrammablednamotifsforbiosensingandinformationencryption
AT keguoliang enthalpyandentropysynergisticregulationbasedprogrammablednamotifsforbiosensingandinformationencryption
AT xiafan enthalpyandentropysynergisticregulationbasedprogrammablednamotifsforbiosensingandinformationencryption
AT gaozhongfeng enthalpyandentropysynergisticregulationbasedprogrammablednamotifsforbiosensingandinformationencryption