Cargando…
Atomic protein structure refinement using all-atom graph representations and SE(3)-equivariant graph transformer
MOTIVATION: The state-of-art protein structure prediction methods such as AlphaFold are being widely used to predict structures of uncharacterized proteins in biomedical research. There is a significant need to further improve the quality and nativeness of the predicted structures to enhance their u...
Autores principales: | Wu, Tianqi, Guo, Zhiye, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191610/ https://www.ncbi.nlm.nih.gov/pubmed/37144951 http://dx.doi.org/10.1093/bioinformatics/btad298 |
Ejemplares similares
-
Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function
por: Boadu, Frimpong, et al.
Publicado: (2023) -
Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function
por: Boadu, Frimpong, et al.
Publicado: (2023) -
3D-equivariant graph neural networks for protein model quality assessment
por: Chen, Chen, et al.
Publicado: (2023) -
Contextual protein and antibody encodings from equivariant graph transformers
por: Mahajan, Sai Pooja, et al.
Publicado: (2023) -
Equivariant
Graph Neural Networks for Toxicity Prediction
por: Cremer, Julian, et al.
Publicado: (2023)