Cargando…

Individual variation in spawning migration timing in a salmonid fish—Exploring roles of environmental and social cues

Describing and explaining patterns of individual animal behaviors in situ, and their repeatability over the annual cycle, is an emerging field in ecology owing largely to advances in tagging technology. We describe individual movements of adult Sakhalin taimen Parahucho perryi, an endangered salmoni...

Descripción completa

Detalles Bibliográficos
Autores principales: Fukushima, Michio, Rand, Peter S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191801/
https://www.ncbi.nlm.nih.gov/pubmed/37214607
http://dx.doi.org/10.1002/ece3.10101
Descripción
Sumario:Describing and explaining patterns of individual animal behaviors in situ, and their repeatability over the annual cycle, is an emerging field in ecology owing largely to advances in tagging technology. We describe individual movements of adult Sakhalin taimen Parahucho perryi, an endangered salmonid fish, in the headwaters of a river in northern Japan during the spring spawning season over 2 years. Migration timing, separated into stages prior to, during, and following the spawning period, was found to be more consistent and repeatable for females than males. We hypothesized that the observed coordinated movement within seasons, and repeatability in migration timing across seasons, could result from (1) individual‐specific responsiveness resulting from endogenous, biological traits that are mediated by environmental factors, or (2) social interactions among comigrating individuals. We found that water temperature and water level experienced by fish near the river mouth approximately a week before arrival at the spawning ground explained variability in run timing between years for females but not males. We found no evidence of conspecific attraction or repulsion resulting from social interactions among the spawners and post‐spawners. We conclude that individual‐specific responsiveness to environmental cues was the likely mechanism underpinning the observed migration timing and movement patterns.