Cargando…

Brillouin zone folding driven bound states in the continuum

Non-radiative bound states in the continuum (BICs) allow construction of resonant cavities with confined electromagnetic energy and high-quality (Q) factors. However, the sharp decay of the Q factor in the momentum space limits their usefulness for device applications. Here we demonstrate an approac...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Wenhao, Srivastava, Yogesh Kumar, Tan, Thomas CaiWei, Wang, Zhiming, Singh, Ranjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192215/
https://www.ncbi.nlm.nih.gov/pubmed/37198151
http://dx.doi.org/10.1038/s41467-023-38367-y
Descripción
Sumario:Non-radiative bound states in the continuum (BICs) allow construction of resonant cavities with confined electromagnetic energy and high-quality (Q) factors. However, the sharp decay of the Q factor in the momentum space limits their usefulness for device applications. Here we demonstrate an approach to achieve sustainable ultrahigh Q factors by engineering Brillouin zone folding-induced BICs (BZF-BICs). All the guided modes are folded into the light cone through periodic perturbation that leads to the emergence of BZF-BICs possessing ultrahigh Q factors throughout the large, tunable momentum space. Unlike conventional BICs, BZF-BICs show perturbation-dependent dramatic enhancement of the Q factor in the entire momentum space and are robust against structural disorders. Our work provides a unique design path for BZF-BIC-based silicon metasurface cavities with extreme robustness against disorder while sustaining ultrahigh Q factors, offering potential applications in terahertz devices, nonlinear optics, quantum computing, and photonic integrated circuits.