Cargando…

Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles

BACKGROUND: Increasingly large and complex biomedical data sets challenge conventional hypothesis-driven analytical approaches, however, data-driven unsupervised learning can detect inherent patterns in such data sets. METHODS: While unsupervised analysis in the medical literature commonly only util...

Descripción completa

Detalles Bibliográficos
Autores principales: Eckardt, Jan-Niklas, Röllig, Christoph, Metzeler, Klaus, Heisig, Peter, Stasik, Sebastian, Georgi, Julia-Annabell, Kroschinsky, Frank, Stölzel, Friedrich, Platzbecker, Uwe, Spiekermann, Karsten, Krug, Utz, Braess, Jan, Görlich, Dennis, Sauerland, Cristina, Woermann, Bernhard, Herold, Tobias, Hiddemann, Wolfgang, Müller-Tidow, Carsten, Serve, Hubert, Baldus, Claudia D., Schäfer-Eckart, Kerstin, Kaufmann, Martin, Krause, Stefan W., Hänel, Mathias, Berdel, Wolfgang E., Schliemann, Christoph, Mayer, Jiri, Hanoun, Maher, Schetelig, Johannes, Wendt, Karsten, Bornhäuser, Martin, Thiede, Christian, Middeke, Jan Moritz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192332/
https://www.ncbi.nlm.nih.gov/pubmed/37198246
http://dx.doi.org/10.1038/s43856-023-00298-6
_version_ 1785043605906259968
author Eckardt, Jan-Niklas
Röllig, Christoph
Metzeler, Klaus
Heisig, Peter
Stasik, Sebastian
Georgi, Julia-Annabell
Kroschinsky, Frank
Stölzel, Friedrich
Platzbecker, Uwe
Spiekermann, Karsten
Krug, Utz
Braess, Jan
Görlich, Dennis
Sauerland, Cristina
Woermann, Bernhard
Herold, Tobias
Hiddemann, Wolfgang
Müller-Tidow, Carsten
Serve, Hubert
Baldus, Claudia D.
Schäfer-Eckart, Kerstin
Kaufmann, Martin
Krause, Stefan W.
Hänel, Mathias
Berdel, Wolfgang E.
Schliemann, Christoph
Mayer, Jiri
Hanoun, Maher
Schetelig, Johannes
Wendt, Karsten
Bornhäuser, Martin
Thiede, Christian
Middeke, Jan Moritz
author_facet Eckardt, Jan-Niklas
Röllig, Christoph
Metzeler, Klaus
Heisig, Peter
Stasik, Sebastian
Georgi, Julia-Annabell
Kroschinsky, Frank
Stölzel, Friedrich
Platzbecker, Uwe
Spiekermann, Karsten
Krug, Utz
Braess, Jan
Görlich, Dennis
Sauerland, Cristina
Woermann, Bernhard
Herold, Tobias
Hiddemann, Wolfgang
Müller-Tidow, Carsten
Serve, Hubert
Baldus, Claudia D.
Schäfer-Eckart, Kerstin
Kaufmann, Martin
Krause, Stefan W.
Hänel, Mathias
Berdel, Wolfgang E.
Schliemann, Christoph
Mayer, Jiri
Hanoun, Maher
Schetelig, Johannes
Wendt, Karsten
Bornhäuser, Martin
Thiede, Christian
Middeke, Jan Moritz
author_sort Eckardt, Jan-Niklas
collection PubMed
description BACKGROUND: Increasingly large and complex biomedical data sets challenge conventional hypothesis-driven analytical approaches, however, data-driven unsupervised learning can detect inherent patterns in such data sets. METHODS: While unsupervised analysis in the medical literature commonly only utilizes a single clustering algorithm for a given data set, we developed a large-scale model with 605 different combinations of target dimensionalities as well as transformation and clustering algorithms and subsequent meta-clustering of individual results. With this model, we investigated a large cohort of 1383 patients from 59 centers in Germany with newly diagnosed acute myeloid leukemia for whom 212 clinical, laboratory, cytogenetic and molecular genetic parameters were available. RESULTS: Unsupervised learning identifies four distinct patient clusters, and statistical analysis shows significant differences in rate of complete remissions, event-free, relapse-free and overall survival between the four clusters. In comparison to the standard-of-care hypothesis-driven European Leukemia Net (ELN2017) risk stratification model, we find all three ELN2017 risk categories being represented in all four clusters in varying proportions indicating unappreciated complexity of AML biology in current established risk stratification models. Further, by using assigned clusters as labels we subsequently train a supervised model to validate cluster assignments on a large external multicenter cohort of 664 intensively treated AML patients. CONCLUSIONS: Dynamic data-driven models are likely more suitable for risk stratification in the context of increasingly complex medical data than rigid hypothesis-driven models to allow for a more personalized treatment allocation and gain novel insights into disease biology.
format Online
Article
Text
id pubmed-10192332
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101923322023-05-19 Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles Eckardt, Jan-Niklas Röllig, Christoph Metzeler, Klaus Heisig, Peter Stasik, Sebastian Georgi, Julia-Annabell Kroschinsky, Frank Stölzel, Friedrich Platzbecker, Uwe Spiekermann, Karsten Krug, Utz Braess, Jan Görlich, Dennis Sauerland, Cristina Woermann, Bernhard Herold, Tobias Hiddemann, Wolfgang Müller-Tidow, Carsten Serve, Hubert Baldus, Claudia D. Schäfer-Eckart, Kerstin Kaufmann, Martin Krause, Stefan W. Hänel, Mathias Berdel, Wolfgang E. Schliemann, Christoph Mayer, Jiri Hanoun, Maher Schetelig, Johannes Wendt, Karsten Bornhäuser, Martin Thiede, Christian Middeke, Jan Moritz Commun Med (Lond) Article BACKGROUND: Increasingly large and complex biomedical data sets challenge conventional hypothesis-driven analytical approaches, however, data-driven unsupervised learning can detect inherent patterns in such data sets. METHODS: While unsupervised analysis in the medical literature commonly only utilizes a single clustering algorithm for a given data set, we developed a large-scale model with 605 different combinations of target dimensionalities as well as transformation and clustering algorithms and subsequent meta-clustering of individual results. With this model, we investigated a large cohort of 1383 patients from 59 centers in Germany with newly diagnosed acute myeloid leukemia for whom 212 clinical, laboratory, cytogenetic and molecular genetic parameters were available. RESULTS: Unsupervised learning identifies four distinct patient clusters, and statistical analysis shows significant differences in rate of complete remissions, event-free, relapse-free and overall survival between the four clusters. In comparison to the standard-of-care hypothesis-driven European Leukemia Net (ELN2017) risk stratification model, we find all three ELN2017 risk categories being represented in all four clusters in varying proportions indicating unappreciated complexity of AML biology in current established risk stratification models. Further, by using assigned clusters as labels we subsequently train a supervised model to validate cluster assignments on a large external multicenter cohort of 664 intensively treated AML patients. CONCLUSIONS: Dynamic data-driven models are likely more suitable for risk stratification in the context of increasingly complex medical data than rigid hypothesis-driven models to allow for a more personalized treatment allocation and gain novel insights into disease biology. Nature Publishing Group UK 2023-05-17 /pmc/articles/PMC10192332/ /pubmed/37198246 http://dx.doi.org/10.1038/s43856-023-00298-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Eckardt, Jan-Niklas
Röllig, Christoph
Metzeler, Klaus
Heisig, Peter
Stasik, Sebastian
Georgi, Julia-Annabell
Kroschinsky, Frank
Stölzel, Friedrich
Platzbecker, Uwe
Spiekermann, Karsten
Krug, Utz
Braess, Jan
Görlich, Dennis
Sauerland, Cristina
Woermann, Bernhard
Herold, Tobias
Hiddemann, Wolfgang
Müller-Tidow, Carsten
Serve, Hubert
Baldus, Claudia D.
Schäfer-Eckart, Kerstin
Kaufmann, Martin
Krause, Stefan W.
Hänel, Mathias
Berdel, Wolfgang E.
Schliemann, Christoph
Mayer, Jiri
Hanoun, Maher
Schetelig, Johannes
Wendt, Karsten
Bornhäuser, Martin
Thiede, Christian
Middeke, Jan Moritz
Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles
title Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles
title_full Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles
title_fullStr Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles
title_full_unstemmed Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles
title_short Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles
title_sort unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192332/
https://www.ncbi.nlm.nih.gov/pubmed/37198246
http://dx.doi.org/10.1038/s43856-023-00298-6
work_keys_str_mv AT eckardtjanniklas unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT rolligchristoph unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT metzelerklaus unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT heisigpeter unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT stasiksebastian unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT georgijuliaannabell unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT kroschinskyfrank unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT stolzelfriedrich unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT platzbeckeruwe unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT spiekermannkarsten unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT krugutz unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT braessjan unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT gorlichdennis unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT sauerlandcristina unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT woermannbernhard unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT heroldtobias unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT hiddemannwolfgang unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT mullertidowcarsten unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT servehubert unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT baldusclaudiad unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT schafereckartkerstin unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT kaufmannmartin unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT krausestefanw unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT hanelmathias unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT berdelwolfgange unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT schliemannchristoph unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT mayerjiri unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT hanounmaher unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT scheteligjohannes unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT wendtkarsten unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT bornhausermartin unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT thiedechristian unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles
AT middekejanmoritz unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles