Cargando…
Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles
BACKGROUND: Increasingly large and complex biomedical data sets challenge conventional hypothesis-driven analytical approaches, however, data-driven unsupervised learning can detect inherent patterns in such data sets. METHODS: While unsupervised analysis in the medical literature commonly only util...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192332/ https://www.ncbi.nlm.nih.gov/pubmed/37198246 http://dx.doi.org/10.1038/s43856-023-00298-6 |
_version_ | 1785043605906259968 |
---|---|
author | Eckardt, Jan-Niklas Röllig, Christoph Metzeler, Klaus Heisig, Peter Stasik, Sebastian Georgi, Julia-Annabell Kroschinsky, Frank Stölzel, Friedrich Platzbecker, Uwe Spiekermann, Karsten Krug, Utz Braess, Jan Görlich, Dennis Sauerland, Cristina Woermann, Bernhard Herold, Tobias Hiddemann, Wolfgang Müller-Tidow, Carsten Serve, Hubert Baldus, Claudia D. Schäfer-Eckart, Kerstin Kaufmann, Martin Krause, Stefan W. Hänel, Mathias Berdel, Wolfgang E. Schliemann, Christoph Mayer, Jiri Hanoun, Maher Schetelig, Johannes Wendt, Karsten Bornhäuser, Martin Thiede, Christian Middeke, Jan Moritz |
author_facet | Eckardt, Jan-Niklas Röllig, Christoph Metzeler, Klaus Heisig, Peter Stasik, Sebastian Georgi, Julia-Annabell Kroschinsky, Frank Stölzel, Friedrich Platzbecker, Uwe Spiekermann, Karsten Krug, Utz Braess, Jan Görlich, Dennis Sauerland, Cristina Woermann, Bernhard Herold, Tobias Hiddemann, Wolfgang Müller-Tidow, Carsten Serve, Hubert Baldus, Claudia D. Schäfer-Eckart, Kerstin Kaufmann, Martin Krause, Stefan W. Hänel, Mathias Berdel, Wolfgang E. Schliemann, Christoph Mayer, Jiri Hanoun, Maher Schetelig, Johannes Wendt, Karsten Bornhäuser, Martin Thiede, Christian Middeke, Jan Moritz |
author_sort | Eckardt, Jan-Niklas |
collection | PubMed |
description | BACKGROUND: Increasingly large and complex biomedical data sets challenge conventional hypothesis-driven analytical approaches, however, data-driven unsupervised learning can detect inherent patterns in such data sets. METHODS: While unsupervised analysis in the medical literature commonly only utilizes a single clustering algorithm for a given data set, we developed a large-scale model with 605 different combinations of target dimensionalities as well as transformation and clustering algorithms and subsequent meta-clustering of individual results. With this model, we investigated a large cohort of 1383 patients from 59 centers in Germany with newly diagnosed acute myeloid leukemia for whom 212 clinical, laboratory, cytogenetic and molecular genetic parameters were available. RESULTS: Unsupervised learning identifies four distinct patient clusters, and statistical analysis shows significant differences in rate of complete remissions, event-free, relapse-free and overall survival between the four clusters. In comparison to the standard-of-care hypothesis-driven European Leukemia Net (ELN2017) risk stratification model, we find all three ELN2017 risk categories being represented in all four clusters in varying proportions indicating unappreciated complexity of AML biology in current established risk stratification models. Further, by using assigned clusters as labels we subsequently train a supervised model to validate cluster assignments on a large external multicenter cohort of 664 intensively treated AML patients. CONCLUSIONS: Dynamic data-driven models are likely more suitable for risk stratification in the context of increasingly complex medical data than rigid hypothesis-driven models to allow for a more personalized treatment allocation and gain novel insights into disease biology. |
format | Online Article Text |
id | pubmed-10192332 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101923322023-05-19 Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles Eckardt, Jan-Niklas Röllig, Christoph Metzeler, Klaus Heisig, Peter Stasik, Sebastian Georgi, Julia-Annabell Kroschinsky, Frank Stölzel, Friedrich Platzbecker, Uwe Spiekermann, Karsten Krug, Utz Braess, Jan Görlich, Dennis Sauerland, Cristina Woermann, Bernhard Herold, Tobias Hiddemann, Wolfgang Müller-Tidow, Carsten Serve, Hubert Baldus, Claudia D. Schäfer-Eckart, Kerstin Kaufmann, Martin Krause, Stefan W. Hänel, Mathias Berdel, Wolfgang E. Schliemann, Christoph Mayer, Jiri Hanoun, Maher Schetelig, Johannes Wendt, Karsten Bornhäuser, Martin Thiede, Christian Middeke, Jan Moritz Commun Med (Lond) Article BACKGROUND: Increasingly large and complex biomedical data sets challenge conventional hypothesis-driven analytical approaches, however, data-driven unsupervised learning can detect inherent patterns in such data sets. METHODS: While unsupervised analysis in the medical literature commonly only utilizes a single clustering algorithm for a given data set, we developed a large-scale model with 605 different combinations of target dimensionalities as well as transformation and clustering algorithms and subsequent meta-clustering of individual results. With this model, we investigated a large cohort of 1383 patients from 59 centers in Germany with newly diagnosed acute myeloid leukemia for whom 212 clinical, laboratory, cytogenetic and molecular genetic parameters were available. RESULTS: Unsupervised learning identifies four distinct patient clusters, and statistical analysis shows significant differences in rate of complete remissions, event-free, relapse-free and overall survival between the four clusters. In comparison to the standard-of-care hypothesis-driven European Leukemia Net (ELN2017) risk stratification model, we find all three ELN2017 risk categories being represented in all four clusters in varying proportions indicating unappreciated complexity of AML biology in current established risk stratification models. Further, by using assigned clusters as labels we subsequently train a supervised model to validate cluster assignments on a large external multicenter cohort of 664 intensively treated AML patients. CONCLUSIONS: Dynamic data-driven models are likely more suitable for risk stratification in the context of increasingly complex medical data than rigid hypothesis-driven models to allow for a more personalized treatment allocation and gain novel insights into disease biology. Nature Publishing Group UK 2023-05-17 /pmc/articles/PMC10192332/ /pubmed/37198246 http://dx.doi.org/10.1038/s43856-023-00298-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Eckardt, Jan-Niklas Röllig, Christoph Metzeler, Klaus Heisig, Peter Stasik, Sebastian Georgi, Julia-Annabell Kroschinsky, Frank Stölzel, Friedrich Platzbecker, Uwe Spiekermann, Karsten Krug, Utz Braess, Jan Görlich, Dennis Sauerland, Cristina Woermann, Bernhard Herold, Tobias Hiddemann, Wolfgang Müller-Tidow, Carsten Serve, Hubert Baldus, Claudia D. Schäfer-Eckart, Kerstin Kaufmann, Martin Krause, Stefan W. Hänel, Mathias Berdel, Wolfgang E. Schliemann, Christoph Mayer, Jiri Hanoun, Maher Schetelig, Johannes Wendt, Karsten Bornhäuser, Martin Thiede, Christian Middeke, Jan Moritz Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles |
title | Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles |
title_full | Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles |
title_fullStr | Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles |
title_full_unstemmed | Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles |
title_short | Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles |
title_sort | unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192332/ https://www.ncbi.nlm.nih.gov/pubmed/37198246 http://dx.doi.org/10.1038/s43856-023-00298-6 |
work_keys_str_mv | AT eckardtjanniklas unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT rolligchristoph unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT metzelerklaus unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT heisigpeter unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT stasiksebastian unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT georgijuliaannabell unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT kroschinskyfrank unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT stolzelfriedrich unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT platzbeckeruwe unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT spiekermannkarsten unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT krugutz unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT braessjan unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT gorlichdennis unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT sauerlandcristina unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT woermannbernhard unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT heroldtobias unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT hiddemannwolfgang unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT mullertidowcarsten unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT servehubert unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT baldusclaudiad unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT schafereckartkerstin unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT kaufmannmartin unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT krausestefanw unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT hanelmathias unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT berdelwolfgange unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT schliemannchristoph unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT mayerjiri unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT hanounmaher unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT scheteligjohannes unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT wendtkarsten unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT bornhausermartin unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT thiedechristian unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles AT middekejanmoritz unsupervisedmetaclusteringidentifiesriskclustersinacutemyeloidleukemiabasedonclinicalandgeneticprofiles |