Cargando…

A conditional RNA Pol II mono-promoter drives HIV-inducible, CRISPR-mediated cyclin T1 suppression and HIV inhibition

Gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) targeted to HIV proviral DNA has shown excision of HIV from infected cells. However, CRISPR-based HIV excision is vulnerable to viral escape. Targeting cellular co-factors provides an attractive yet risky alternati...

Descripción completa

Detalles Bibliográficos
Autores principales: Chinnapaiyan, Srinivasan, Santiago, Maria-Jose, Panda, Kingshuk, Rahman, Md. Sohanur, Alluin, Jessica, Rossi, John, Unwalla, Hoshang J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192333/
https://www.ncbi.nlm.nih.gov/pubmed/37215150
http://dx.doi.org/10.1016/j.omtn.2023.04.011
Descripción
Sumario:Gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) targeted to HIV proviral DNA has shown excision of HIV from infected cells. However, CRISPR-based HIV excision is vulnerable to viral escape. Targeting cellular co-factors provides an attractive yet risky alternative to render viral escape irrelevant. Cyclin T1 is a critical modulator of HIV transcription and mediates recruitment of positive transcription elongation factor-b (P-TEFb) kinase for transcriptional elongation. Hence, a CRISPR-mediated cyclin T1 inactivation will silence HIV transcription, locking it in an inactive form in the cell and thereby serving as an effective antiviral and possibly effecting a functional cure. However, cellular genes play important roles, and their uncontrolled inhibition can promote undesirable effects. Here, we demonstrate a conditional inducible RNA polymerase II (RNA Pol II) mono-promoter-based co-expression of a CRISPR system targeting cyclin T1 from a single transcription unit. Co-expression of guide RNA (gRNA) and CRISPR-associated protein (Cas9) is observed only in HIV-infected cells and leads to sustained HIV suppression in stringent chronically infected cell lines as well as in T cell lines. We further show that incorporation of cis-acting ribozymes immediately upstream of the gRNA further enhances HIV silencing.