Cargando…

Research on tire crack detection using image deep learning method

Driving can understand the importance of tire tread depth and air pressure, but most people are unaware of the safety risks of tire oxidation. Drivers must maintain vehicle tire quality to ensure performance, efficiency, and safety. In this study, a deep learning tire defect detection method was des...

Descripción completa

Detalles Bibliográficos
Autor principal: Lin, Shih-Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192369/
https://www.ncbi.nlm.nih.gov/pubmed/37198216
http://dx.doi.org/10.1038/s41598-023-35227-z
Descripción
Sumario:Driving can understand the importance of tire tread depth and air pressure, but most people are unaware of the safety risks of tire oxidation. Drivers must maintain vehicle tire quality to ensure performance, efficiency, and safety. In this study, a deep learning tire defect detection method was designed. This paper improves the traditional ShuffleNet and proposes an improved ShuffleNet method for tire image detection. The research results are compared with the five methods of GoogLeNet, traditional ShuffleNet, VGGNet, ResNet and improved ShuffleNet through tire database verification. The experiment found that the detection rate of tire debris defects was 94.7%. Tire defects can be effectively detected, which proves the robustness and effectiveness of the improved ShuffleNet, enabling drivers and tire manufacturers to save labor costs and greatly reduce tire defect detection time.