Cargando…

Effect of oral vitamin A supplementation on host immune response to infectious bronchitis virus infection in specific pathogen-free chicken

Vitamin A is a fat-soluble vitamin that is a crucial mediator of the immune system. In this study, we evaluated the effect of oral vitamin A supplementation on host immune responses to infectious bronchitis virus (IBV) infection in chickens. Forty 1-day-old specific pathogen-free (SPF) chickens were...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lili, Hou, Yutong, Ma, Zhanbang, Xie, Jinjin, Fan, Jiahui, Jiao, Yaru, Wang, Fangfang, Han, Zongxi, Liu, Shengwang, Ma, Deying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192637/
https://www.ncbi.nlm.nih.gov/pubmed/37150176
http://dx.doi.org/10.1016/j.psj.2023.102701
Descripción
Sumario:Vitamin A is a fat-soluble vitamin that is a crucial mediator of the immune system. In this study, we evaluated the effect of oral vitamin A supplementation on host immune responses to infectious bronchitis virus (IBV) infection in chickens. Forty 1-day-old specific pathogen-free (SPF) chickens were fed a basal diet and randomly divided into 2 groups (n = 20 birds per group). Chickens in the experimental group were treated orally with vitamin A (dissolved in 0.1 mL soybean oil, at a dose of 8,000 IU per kg diet) daily. Birds in the control group were orally administered 0.1 mL soybean oil without vitamin A until 21 d of age. On d 21 after birth, all chickens were infected with 0.1 mL of 10(6.5) 50% median embryo infectious dose of a pathogenic IBV strain (CK/CH/LDL/091022) by intraocular and intranasal routes. The results demonstrated that oral vitamin A supplementation did not affect the clinical course of disease and growth performance of SPF chickens. However, vitamin A supplementation increased the IBV-specific IgG serum levels and decreased the viral load in some tissues of IBV-infected chickens. In addition, the results demonstrated that vitamin A supplementation decreased the expression levels of most immune-related molecules in some tissues of IBV-infected chickens. Vitamin A supplementation decreased the mRNA expression levels of some avian β-defensins (AvBD2, 3, 6, 7, 11, and 13) and increased the expression levels of AvBD9 and AvBD12 in some tissues of IBV-infected chickens. Similarly, vitamin A supplementation decreased the mRNA expression levels of some cytokines (interferon-γ, interleukin-1β [IL-1β], and IL-6) and increased the mRNA expression levels of IL-2 in some tissues of IBV-infected chickens. Furthermore, vitamin A supplementation decreased the mRNA expression levels of myeloid differentiation primary response protein 88, nuclear factor-κB p65, toll-like receptor 3, toll-like receptor 7, and CD4. In summary, the present study suggests that vitamin A supplementation enhances the immune function of SPF chickens against IBV infection by inhibiting viral replication, increasing the IBV-specific antibody titer, and suppressing the excessive inflammatory responses to IBV infection.