Cargando…
Mechanosensory signal transmission in the arms and the nerve ring, an interarm connective, of Octopus bimaculoides
Octopuses coordinate their arms in a range of complex behaviors. In addition to brain-based sensorimotor integration and control, interarm coordination also occurs through a nerve ring at the arms’ base. Here, we examine responses to mechanosensory stimulation of the arms by recording neural activit...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192654/ https://www.ncbi.nlm.nih.gov/pubmed/37216097 http://dx.doi.org/10.1016/j.isci.2023.106722 |
Sumario: | Octopuses coordinate their arms in a range of complex behaviors. In addition to brain-based sensorimotor integration and control, interarm coordination also occurs through a nerve ring at the arms’ base. Here, we examine responses to mechanosensory stimulation of the arms by recording neural activity in the stimulated arm, the nerve ring, and other arms in a preparation of only the ring and arms. Arm axial nerve cords show graded responses to mechanosensory input and activity is transmitted proximally and distally in the arm. Mechanostimulation of one arm generates spiking in the nerve ring and in other arms. Activity in the nerve ring decreases with distance from the stimulated arm. Spontaneous activity with a range of spiking patterns occurs in the axial nerve cords and the nerve ring. These data show rich interarm signaling that supports arm control and coordination occurring outside of the brain. |
---|