Cargando…
Multi-head attention-based masked sequence model for mapping functional brain networks
The investigation of functional brain networks (FBNs) using task-based functional magnetic resonance imaging (tfMRI) has gained significant attention in the field of neuroimaging. Despite the availability of several methods for constructing FBNs, including traditional methods like GLM and deep learn...
Autores principales: | He, Mengshen, Hou, Xiangyu, Ge, Enjie, Wang, Zhenwei, Kang, Zili, Qiang, Ning, Zhang, Xin, Ge, Bao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192686/ https://www.ncbi.nlm.nih.gov/pubmed/37214388 http://dx.doi.org/10.3389/fnins.2023.1183145 |
Ejemplares similares
-
A multi-head self-attention deep learning approach for detection and recommendation of neuromagnetic high frequency oscillations in epilepsy
por: Zhao, Xiangyu, et al.
Publicado: (2022) -
Distract Your Attention: Multi-Head Cross Attention Network for Facial Expression Recognition
por: Wen, Zhengyao, et al.
Publicado: (2023) -
Attention Performance Measured by Attention Network Test Is Correlated with Global and Regional Efficiency of Structural Brain Networks
por: Xiao, Min, et al.
Publicado: (2016) -
Multi-Head Attention-Based Long Short-Term Memory for Depression Detection From Speech
por: Zhao, Yan, et al.
Publicado: (2021) -
A facial depression recognition method based on hybrid multi-head cross attention network
por: Li, Yutong, et al.
Publicado: (2023)