Cargando…
GCF(2)-Net: global-aware cross-modal feature fusion network for speech emotion recognition
Emotion recognition plays an essential role in interpersonal communication. However, existing recognition systems use only features of a single modality for emotion recognition, ignoring the interaction of information from the different modalities. Therefore, in our study, we propose a global-aware...
Autores principales: | Li, Feng, Luo, Jiusong, Wang, Lingling, Liu, Wei, Sang, Xiaoshuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192703/ https://www.ncbi.nlm.nih.gov/pubmed/37214410 http://dx.doi.org/10.3389/fnins.2023.1183132 |
Ejemplares similares
-
Multi-Modal Fusion Emotion Recognition Method of Speech Expression Based on Deep Learning
por: Liu, Dong, et al.
Publicado: (2021) -
Emotion Recognition using Speech Features
por: Rao, K Sreenivasa, et al.
Publicado: (2013) -
Stressed Speech Emotion Recognition Using Teager Energy and Spectral Feature Fusion with Feature Optimization
por: Bandela, Surekha Reddy, et al.
Publicado: (2023) -
On the Speech Properties and Feature Extraction Methods in Speech Emotion Recognition
por: Kacur, Juraj, et al.
Publicado: (2021) -
Multimodal transformer augmented fusion for speech emotion recognition
por: Wang, Yuanyuan, et al.
Publicado: (2023)