Cargando…
Comparison of linear and non-linear machine learning models for time-dependent readmission or mortality prediction among hospitalized heart failure patients
Although many models are available to predict prognosis of heart failure patients, most tools combining survival analysis are based on proportional hazard model. Non-linear machine learning algorithms would overcome the limitation of the time-independent hazard ratio assumption and provide more info...
Autores principales: | Tong, Rui, Zhu, Zhongsheng, Ling, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192765/ https://www.ncbi.nlm.nih.gov/pubmed/37215773 http://dx.doi.org/10.1016/j.heliyon.2023.e16068 |
Ejemplares similares
-
Machine learning based readmission and mortality prediction in heart failure patients
por: Sabouri, Maziar, et al.
Publicado: (2023) -
Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality
por: Shin, Sheojung, et al.
Publicado: (2020) -
Predicting Hospital Readmission in Heart Failure Patients in Iran: A Comparison of Various Machine Learning Methods
por: Najafi-Vosough, Roya, et al.
Publicado: (2021) -
Heart Failure Emergency Readmission Prediction Using Stacking Machine Learning Model
por: Rahman, Md. Sohanur, et al.
Publicado: (2023) -
Using neuroimaging to predict relapse in stimulant dependence: A comparison of linear and machine learning models
por: Gowin, Joshua L., et al.
Publicado: (2019)