Cargando…

A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study

BACKGROUND: One challenge in the field of in-vitro fertilisation is the selection of the most viable embryos for transfer. Morphological quality assessment and morphokinetic analysis both have the disadvantage of intra-observer and inter-observer variability. A third method, preimplantation genetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Barnes, Josue, Brendel, Matthew, Gao, Vianne R, Rajendran, Suraj, Kim, Junbum, Li, Qianzi, Malmsten, Jonas E, Sierra, Jose T, Zisimopoulos, Pantelis, Sigaras, Alexandros, Khosravi, Pegah, Meseguer, Marcos, Zhan, Qiansheng, Rosenwaks, Zev, Elemento, Olivier, Zaninovic, Nikica, Hajirasouliha, Iman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193126/
https://www.ncbi.nlm.nih.gov/pubmed/36543475
http://dx.doi.org/10.1016/S2589-7500(22)00213-8
_version_ 1785043774669324288
author Barnes, Josue
Brendel, Matthew
Gao, Vianne R
Rajendran, Suraj
Kim, Junbum
Li, Qianzi
Malmsten, Jonas E
Sierra, Jose T
Zisimopoulos, Pantelis
Sigaras, Alexandros
Khosravi, Pegah
Meseguer, Marcos
Zhan, Qiansheng
Rosenwaks, Zev
Elemento, Olivier
Zaninovic, Nikica
Hajirasouliha, Iman
author_facet Barnes, Josue
Brendel, Matthew
Gao, Vianne R
Rajendran, Suraj
Kim, Junbum
Li, Qianzi
Malmsten, Jonas E
Sierra, Jose T
Zisimopoulos, Pantelis
Sigaras, Alexandros
Khosravi, Pegah
Meseguer, Marcos
Zhan, Qiansheng
Rosenwaks, Zev
Elemento, Olivier
Zaninovic, Nikica
Hajirasouliha, Iman
author_sort Barnes, Josue
collection PubMed
description BACKGROUND: One challenge in the field of in-vitro fertilisation is the selection of the most viable embryos for transfer. Morphological quality assessment and morphokinetic analysis both have the disadvantage of intra-observer and inter-observer variability. A third method, preimplantation genetic testing for aneuploidy (PGT-A), has limitations too, including its invasiveness and cost. We hypothesised that differences in aneuploid and euploid embryos that allow for model-based classification are reflected in morphology, morphokinetics, and associated clinical information. METHODS: In this retrospective study, we used machine-learning and deep-learning approaches to develop STORK-A, a non-invasive and automated method of embryo evaluation that uses artificial intelligence to predict embryo ploidy status. Our method used a dataset of 10 378 embryos that consisted of static images captured at 110 h after intracytoplasmic sperm injection, morphokinetic parameters, blastocyst morphological assessments, maternal age, and ploidy status. Independent and external datasets, Weill Cornell Medicine EmbryoScope+ (WCM-ES+; Weill Cornell Medicine Center of Reproductive Medicine, NY, USA) and IVI Valencia (IVI Valencia, Health Research Institute la Fe, Valencia, Spain) were used to test the generalisability of STORK-A and were compared measuring accuracy and area under the receiver operating characteristic curve (AUC). FINDINGS: Analysis and model development included the use of 10 378 embryos, all with PGT-A results, from 1385 patients (maternal age range 21–48 years; mean age 36·98 years [SD 4·62]). STORK-A predicted aneuploid versus euploid embryos with an accuracy of 69·3% (95% CI 66·9–71·5; AUC 0·761; positive predictive value [PPV] 76·1%; negative predictive value [NPV] 62·1%) when using images, maternal age, morphokinetics, and blastocyst score. A second classification task trained to predict complex aneuploidy versus euploidy and single aneuploidy produced an accuracy of 74·0% (95% CI 71·7–76·1; AUC 0·760; PPV 54·9%; NPV 87·6%) using an image, maternal age, morphokinetic parameters, and blastocyst grade. A third classification task trained to predict complex aneuploidy versus euploidy had an accuracy of 77·6% (95% CI 75·0–80·0; AUC 0·847; PPV 76·7%; NPV 78·0%). STORK-A reported accuracies of 63·4% (AUC 0·702) on the WCM-ES+ dataset and 65·7% (AUC 0·715) on the IVI Valencia dataset, when using an image, maternal age, and morphokinetic parameters, similar to the STORK-A test dataset accuracy of 67·8% (AUC 0·737), showing generalisability. INTERPRETATION: As a proof of concept, STORK-A shows an ability to predict embryo ploidy in a non-invasive manner and shows future potential as a standardised supplementation to traditional methods of embryo selection and prioritisation for implantation or recommendation for PGT-A. FUNDING: US National Institutes of Health.
format Online
Article
Text
id pubmed-10193126
institution National Center for Biotechnology Information
language English
publishDate 2023
record_format MEDLINE/PubMed
spelling pubmed-101931262023-05-18 A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study Barnes, Josue Brendel, Matthew Gao, Vianne R Rajendran, Suraj Kim, Junbum Li, Qianzi Malmsten, Jonas E Sierra, Jose T Zisimopoulos, Pantelis Sigaras, Alexandros Khosravi, Pegah Meseguer, Marcos Zhan, Qiansheng Rosenwaks, Zev Elemento, Olivier Zaninovic, Nikica Hajirasouliha, Iman Lancet Digit Health Article BACKGROUND: One challenge in the field of in-vitro fertilisation is the selection of the most viable embryos for transfer. Morphological quality assessment and morphokinetic analysis both have the disadvantage of intra-observer and inter-observer variability. A third method, preimplantation genetic testing for aneuploidy (PGT-A), has limitations too, including its invasiveness and cost. We hypothesised that differences in aneuploid and euploid embryos that allow for model-based classification are reflected in morphology, morphokinetics, and associated clinical information. METHODS: In this retrospective study, we used machine-learning and deep-learning approaches to develop STORK-A, a non-invasive and automated method of embryo evaluation that uses artificial intelligence to predict embryo ploidy status. Our method used a dataset of 10 378 embryos that consisted of static images captured at 110 h after intracytoplasmic sperm injection, morphokinetic parameters, blastocyst morphological assessments, maternal age, and ploidy status. Independent and external datasets, Weill Cornell Medicine EmbryoScope+ (WCM-ES+; Weill Cornell Medicine Center of Reproductive Medicine, NY, USA) and IVI Valencia (IVI Valencia, Health Research Institute la Fe, Valencia, Spain) were used to test the generalisability of STORK-A and were compared measuring accuracy and area under the receiver operating characteristic curve (AUC). FINDINGS: Analysis and model development included the use of 10 378 embryos, all with PGT-A results, from 1385 patients (maternal age range 21–48 years; mean age 36·98 years [SD 4·62]). STORK-A predicted aneuploid versus euploid embryos with an accuracy of 69·3% (95% CI 66·9–71·5; AUC 0·761; positive predictive value [PPV] 76·1%; negative predictive value [NPV] 62·1%) when using images, maternal age, morphokinetics, and blastocyst score. A second classification task trained to predict complex aneuploidy versus euploidy and single aneuploidy produced an accuracy of 74·0% (95% CI 71·7–76·1; AUC 0·760; PPV 54·9%; NPV 87·6%) using an image, maternal age, morphokinetic parameters, and blastocyst grade. A third classification task trained to predict complex aneuploidy versus euploidy had an accuracy of 77·6% (95% CI 75·0–80·0; AUC 0·847; PPV 76·7%; NPV 78·0%). STORK-A reported accuracies of 63·4% (AUC 0·702) on the WCM-ES+ dataset and 65·7% (AUC 0·715) on the IVI Valencia dataset, when using an image, maternal age, and morphokinetic parameters, similar to the STORK-A test dataset accuracy of 67·8% (AUC 0·737), showing generalisability. INTERPRETATION: As a proof of concept, STORK-A shows an ability to predict embryo ploidy in a non-invasive manner and shows future potential as a standardised supplementation to traditional methods of embryo selection and prioritisation for implantation or recommendation for PGT-A. FUNDING: US National Institutes of Health. 2023-01 /pmc/articles/PMC10193126/ /pubmed/36543475 http://dx.doi.org/10.1016/S2589-7500(22)00213-8 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article under the CC BY-NC-ND 4.0 license.
spellingShingle Article
Barnes, Josue
Brendel, Matthew
Gao, Vianne R
Rajendran, Suraj
Kim, Junbum
Li, Qianzi
Malmsten, Jonas E
Sierra, Jose T
Zisimopoulos, Pantelis
Sigaras, Alexandros
Khosravi, Pegah
Meseguer, Marcos
Zhan, Qiansheng
Rosenwaks, Zev
Elemento, Olivier
Zaninovic, Nikica
Hajirasouliha, Iman
A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study
title A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study
title_full A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study
title_fullStr A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study
title_full_unstemmed A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study
title_short A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study
title_sort non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193126/
https://www.ncbi.nlm.nih.gov/pubmed/36543475
http://dx.doi.org/10.1016/S2589-7500(22)00213-8
work_keys_str_mv AT barnesjosue anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT brendelmatthew anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT gaovianner anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT rajendransuraj anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT kimjunbum anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT liqianzi anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT malmstenjonase anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT sierrajoset anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT zisimopoulospantelis anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT sigarasalexandros anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT khosravipegah anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT meseguermarcos anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT zhanqiansheng anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT rosenwakszev anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT elementoolivier anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT zaninovicnikica anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT hajirasoulihaiman anoninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT barnesjosue noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT brendelmatthew noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT gaovianner noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT rajendransuraj noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT kimjunbum noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT liqianzi noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT malmstenjonase noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT sierrajoset noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT zisimopoulospantelis noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT sigarasalexandros noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT khosravipegah noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT meseguermarcos noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT zhanqiansheng noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT rosenwakszev noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT elementoolivier noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT zaninovicnikica noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy
AT hajirasoulihaiman noninvasiveartificialintelligenceapproachforthepredictionofhumanblastocystploidyaretrospectivemodeldevelopmentandvalidationstudy