Cargando…

Engineering carbon semi-tubes supported platinum catalyst for efficient oxygen reduction electrocatalysis

Innovation of catalyst structure is extremely important to develop the high-performance electrocatalysts for oxygen-reduction reaction (ORR). Herein, nitrogen-doped carbon semi-tube (N-CST) is used as a functional support for stabilizing the microwave-reduced Pt nanoparticles with an average size of...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Jialin, Chen, Junxiang, Chen, Yizhe, Zhang, Jiujun, Zhang, Shiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193227/
https://www.ncbi.nlm.nih.gov/pubmed/37216112
http://dx.doi.org/10.1016/j.isci.2023.106730
Descripción
Sumario:Innovation of catalyst structure is extremely important to develop the high-performance electrocatalysts for oxygen-reduction reaction (ORR). Herein, nitrogen-doped carbon semi-tube (N-CST) is used as a functional support for stabilizing the microwave-reduced Pt nanoparticles with an average size of ∼2.8 nm to synthesize the semi-tubular Pt/N-CST catalyst. The contribution of interfacial Pt-N bond between N-CST support and Pt nanoparticles with electrons transfer from N-CST support to Pt nanoparticles is found by electron paramagnetic resonance (EPR) and X-ray absorption fine structure (XAFS) spectroscopy. This bridged Pt-N coordination can simultaneously help ORR electrocatalysis and promote electrochemical stability. As a result, the innovative Pt/N-CST catalyst exhibits excellent catalytic performance, realizing ORR activity and electrochemical stability superior to the commercial Pt/C catalyst. Furthermore, density functional theoretical (DFT) calculations suggest that the interfacial Pt-N-C site with unique affinity of O∗ + OH∗ can provide new active routes for the enhanced electrocatalytic ORR capacity.