Cargando…

Alternatively activated lung alveolar and interstitial macrophages promote fungal growth

How lung macrophages, especially interstitial macrophages (IMs), respond to invading pathogens remains elusive. Here, we show that mice exhibited a rapid and substantial expansion of macrophages, especially CX3CR1(+) IMs, in the lung following infection with Cryptococcus neoformans, a pathogenic fun...

Descripción completa

Detalles Bibliográficos
Autores principales: Strickland, Ashley B., Chen, Yanli, Sun, Donglei, Shi, Meiqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193231/
https://www.ncbi.nlm.nih.gov/pubmed/37216116
http://dx.doi.org/10.1016/j.isci.2023.106717
Descripción
Sumario:How lung macrophages, especially interstitial macrophages (IMs), respond to invading pathogens remains elusive. Here, we show that mice exhibited a rapid and substantial expansion of macrophages, especially CX3CR1(+) IMs, in the lung following infection with Cryptococcus neoformans, a pathogenic fungus leading to high mortality among patients with HIV/AIDS. The IM expansion correlated with enhanced CSF1 and IL-4 production and was affected by the deficiency of CCR2 or Nr4a1. Both alveolar macrophages (AMs) and IMs were observed to harbor C. neoformans and became alternatively activated following infection, with IMs being more polarized. The absence of AMs by genetically disrupting CSF2 signaling reduced fungal loads in the lung and prolonged the survival of infected mice. Likewise, infected mice depleted of IMs by the CSF1 receptor inhibitor PLX5622 displayed significantly lower pulmonary fungal burdens. Thus, C. neoformans infection induces alternative activation of both AMs and IMs, which facilitates fungal growth in the lung.