Cargando…
An Ab Initio Neural Network Potential Energy Surface for the Dimer of Formic Acid and Further Quantum Tunneling Dynamics
[Image: see text] We construct a full-dimensional ab initio neural network potential energy surface (PES) for the isomerization system of the formic acid dimer (FAD). This is based upon ab initio calculations using the DLPNO-CCSD(T) approach with the aug-cc-pVTZ basis set, performed at over 14000 sy...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193396/ https://www.ncbi.nlm.nih.gov/pubmed/37214673 http://dx.doi.org/10.1021/acsomega.3c02169 |
Sumario: | [Image: see text] We construct a full-dimensional ab initio neural network potential energy surface (PES) for the isomerization system of the formic acid dimer (FAD). This is based upon ab initio calculations using the DLPNO-CCSD(T) approach with the aug-cc-pVTZ basis set, performed at over 14000 symmetry-unique geometries. An accurate fit to the obtained energies is generated using a general neural network fitting procedure combined with the fundamental invariant method, and the overall energy-weighted root-mean-square fitting error is about 6.4 cm(–1). Using this PES, we present a multidimensional quantum dynamics study on tunneling splittings with an efficient theoretical scheme developed by our group. The ground-state tunneling splitting of FAD calculated with a four-mode coupled method is in good agreement with the most recent experimental measurements. The PES can be applied for further dynamics studies. The effectiveness of the present scheme for constructing a high-dimensional PES is demonstrated, and this scheme is expected to be feasible for larger molecular systems. |
---|