Cargando…
Molybdenum Mobility During Managed Aquifer Recharge in Carbonate Aquifers
[Image: see text] The mobility of molybdenum (Mo) in groundwater systems has received little attention, although a high intake of Mo is known to be detrimental to human and animal health. Here, we used a comprehensive hydrochemical data set collected during a multi-cycle aquifer storage and recovery...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193584/ https://www.ncbi.nlm.nih.gov/pubmed/37126233 http://dx.doi.org/10.1021/acs.est.2c08619 |
_version_ | 1785043856340811776 |
---|---|
author | Koopmann, Sarah Prommer, Henning Siade, Adam Pichler, Thomas |
author_facet | Koopmann, Sarah Prommer, Henning Siade, Adam Pichler, Thomas |
author_sort | Koopmann, Sarah |
collection | PubMed |
description | [Image: see text] The mobility of molybdenum (Mo) in groundwater systems has received little attention, although a high intake of Mo is known to be detrimental to human and animal health. Here, we used a comprehensive hydrochemical data set collected during a multi-cycle aquifer storage and recovery test to study the mechanisms that control the mobility of Mo under spatially and temporally varying hydrochemical conditions. The model-based interpretation of the data indicated that the initial mobilization of Mo occurs as a sequence of reactions, in which (i) the aerobic injectant induces pyrite oxidation, (ii) the released acidity is partially buffered by the dissolution of dolomite that (iii) leads to the release of Mo with highly soluble sulfurized organic matter prevailing between the intercrystalline spaces of the dolomite matrix or incorporated in dolomite crystals. Once released, Mo mobility was primarily controlled by pH-dependent surface complexation reactions to the sediments and, to a lesser extent, the capture by iron sulfides (FeS). In the studied system, Mo mobilization could be effectively mitigated by reducing or eliminating pyrite oxidation, which decreases the likelihood of dolomite dissolution and associated Mo release. |
format | Online Article Text |
id | pubmed-10193584 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101935842023-05-19 Molybdenum Mobility During Managed Aquifer Recharge in Carbonate Aquifers Koopmann, Sarah Prommer, Henning Siade, Adam Pichler, Thomas Environ Sci Technol [Image: see text] The mobility of molybdenum (Mo) in groundwater systems has received little attention, although a high intake of Mo is known to be detrimental to human and animal health. Here, we used a comprehensive hydrochemical data set collected during a multi-cycle aquifer storage and recovery test to study the mechanisms that control the mobility of Mo under spatially and temporally varying hydrochemical conditions. The model-based interpretation of the data indicated that the initial mobilization of Mo occurs as a sequence of reactions, in which (i) the aerobic injectant induces pyrite oxidation, (ii) the released acidity is partially buffered by the dissolution of dolomite that (iii) leads to the release of Mo with highly soluble sulfurized organic matter prevailing between the intercrystalline spaces of the dolomite matrix or incorporated in dolomite crystals. Once released, Mo mobility was primarily controlled by pH-dependent surface complexation reactions to the sediments and, to a lesser extent, the capture by iron sulfides (FeS). In the studied system, Mo mobilization could be effectively mitigated by reducing or eliminating pyrite oxidation, which decreases the likelihood of dolomite dissolution and associated Mo release. American Chemical Society 2023-05-01 /pmc/articles/PMC10193584/ /pubmed/37126233 http://dx.doi.org/10.1021/acs.est.2c08619 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Koopmann, Sarah Prommer, Henning Siade, Adam Pichler, Thomas Molybdenum Mobility During Managed Aquifer Recharge in Carbonate Aquifers |
title | Molybdenum Mobility
During Managed Aquifer Recharge
in Carbonate Aquifers |
title_full | Molybdenum Mobility
During Managed Aquifer Recharge
in Carbonate Aquifers |
title_fullStr | Molybdenum Mobility
During Managed Aquifer Recharge
in Carbonate Aquifers |
title_full_unstemmed | Molybdenum Mobility
During Managed Aquifer Recharge
in Carbonate Aquifers |
title_short | Molybdenum Mobility
During Managed Aquifer Recharge
in Carbonate Aquifers |
title_sort | molybdenum mobility
during managed aquifer recharge
in carbonate aquifers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193584/ https://www.ncbi.nlm.nih.gov/pubmed/37126233 http://dx.doi.org/10.1021/acs.est.2c08619 |
work_keys_str_mv | AT koopmannsarah molybdenummobilityduringmanagedaquiferrechargeincarbonateaquifers AT prommerhenning molybdenummobilityduringmanagedaquiferrechargeincarbonateaquifers AT siadeadam molybdenummobilityduringmanagedaquiferrechargeincarbonateaquifers AT pichlerthomas molybdenummobilityduringmanagedaquiferrechargeincarbonateaquifers |