Cargando…
Selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release for diabetic wound healing
BACKGROUND: Multifunctional hydrogels with controllable degradation and drug release have attracted extensive attention in diabetic wound healing. This study focused on the acceleration of diabetic wound healing with selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193707/ https://www.ncbi.nlm.nih.gov/pubmed/37202774 http://dx.doi.org/10.1186/s40824-023-00367-w |
Sumario: | BACKGROUND: Multifunctional hydrogels with controllable degradation and drug release have attracted extensive attention in diabetic wound healing. This study focused on the acceleration of diabetic wound healing with selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release. METHODS: Herein, selenium-containing hybrid hydrogels, defined as DSeP@PB, were fabricated via the reinforcement of selenol-end capping polyethylene glycol (PEG) hydrogels by polydopamine nanoparticles (PDANPs) and Prussian blue nanozymes in a one-pot approach in the absence of any other chemical additive or organic solvent based on diselenide and selenide bonding-guided crosslinking, making them accessible for large-scale mass production. RESULTS: Reinforcement by PDANPs greatly increases the mechanical properties of the hydrogels, realizing excellent injectability and flexible mechanical properties for DSeP@PB. Dynamic diselenide introduction endowed the hydrogels with on-demand degradation under reducing or oxidizing conditions and light-triggered nanozyme release. The bioactivity of Prussian blue nanozymes afforded the hydrogels with efficient antibacterial, ROS-scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further animal studies indicated that DSeP@PB under red light irradiation showed the most efficient wound healing activity by stimulating angiogenesis and collagen deposition and inhibiting inflammation. CONCLUSION: The combined merits of DSeP@PB (on-demand degradation, light-triggered release, flexible mechanical robustness, antibacterial, ROS-scavenging and immunomodulatory capacities) enable its high potential as a new hydrogel dressing that can be harnessed for safe and efficient therapeutics for diabetic wound healing. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40824-023-00367-w. |
---|