Cargando…

Assessing the impact of architectural and behavioral interventions for controlling indoor COVID-19 infection risk: An agent-based approach

The COVID-19 pandemic changed our lives, forcing us to reconsider our built environment. In some buildings with high traffic flow, infected individuals release viral particles during movement. The complex interactions between humans, building, and viruses make it difficult to predict indoor infectio...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Anxiao, Zhen, Qi, Zheng, Chi, Li, Jing, Zheng, Yue, Du, Yiming, Huang, Qiong, Zhang, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193776/
http://dx.doi.org/10.1016/j.jobe.2023.106807
Descripción
Sumario:The COVID-19 pandemic changed our lives, forcing us to reconsider our built environment. In some buildings with high traffic flow, infected individuals release viral particles during movement. The complex interactions between humans, building, and viruses make it difficult to predict indoor infection risk by traditional computational fluid dynamics methods. The paper developed a spatially-explicit agent-based model to simulate indoor respiratory pathogen transmission for buildings with frequent movement of people. The social force model simulating pedestrian movement and a simple forcing method simulating indoor airflow were coupled in an agent-based modeling environment. The impact of architectural and behavioral interventions on the indoor infection risk was then compared by simulating a supermarket case. We found that wearing a mask was the most effective single intervention, with all people wearing masks reducing the percentage of infections to 0.08%. Among the combined interventions, the combination of customer control is the most effective and can reduce the percentage of infections to 0.04%. In addition, the extremely strict combination of all the interventions makes the supermarket free of new infections during its 8-h operation. The approach can help architects, managers, or the government better understand the effect of nonpharmaceutical interventions to reduce the infection risk and improve the level of indoor safety.