Cargando…
S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling
KEAP1 (Kelch-like ECH-associated protein), a cytoplasmic repressor of the oxidative stress responsive transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), senses the presence of electrophilic agents by modification of its sensor cysteine residues. In addition to xenobiotics, seve...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193962/ https://www.ncbi.nlm.nih.gov/pubmed/37155889 http://dx.doi.org/10.1073/pnas.2300763120 |
_version_ | 1785043921351475200 |
---|---|
author | Ko, Yeonjin Hong, Mannkyu Lee, Seungbeom Kumar, Manoj Ibrahim, Lara Nutsch, Kayla Stanton, Caroline Sondermann, Phillip Sandoval, Braddock Bulos, Maya L. Iaconelli, Jonathan Chatterjee, Arnab K. Wiseman, R. Luke Schultz, Peter G. Bollong, Michael J. |
author_facet | Ko, Yeonjin Hong, Mannkyu Lee, Seungbeom Kumar, Manoj Ibrahim, Lara Nutsch, Kayla Stanton, Caroline Sondermann, Phillip Sandoval, Braddock Bulos, Maya L. Iaconelli, Jonathan Chatterjee, Arnab K. Wiseman, R. Luke Schultz, Peter G. Bollong, Michael J. |
author_sort | Ko, Yeonjin |
collection | PubMed |
description | KEAP1 (Kelch-like ECH-associated protein), a cytoplasmic repressor of the oxidative stress responsive transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), senses the presence of electrophilic agents by modification of its sensor cysteine residues. In addition to xenobiotics, several reactive metabolites have been shown to covalently modify key cysteines on KEAP1, although the full repertoire of these molecules and their respective modifications remain undefined. Here, we report the discovery of sAKZ692, a small molecule identified by high-throughput screening that stimulates NRF2 transcriptional activity in cells by inhibiting the glycolytic enzyme pyruvate kinase. sAKZ692 treatment promotes the buildup of glyceraldehyde 3-phosphate, a metabolite which leads to S-lactate modification of cysteine sensor residues of KEAP1, resulting in NRF2-dependent transcription. This work identifies a posttranslational modification of cysteine derived from a reactive central carbon metabolite and helps further define the complex relationship between metabolism and the oxidative stress-sensing machinery of the cell. |
format | Online Article Text |
id | pubmed-10193962 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-101939622023-11-08 S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling Ko, Yeonjin Hong, Mannkyu Lee, Seungbeom Kumar, Manoj Ibrahim, Lara Nutsch, Kayla Stanton, Caroline Sondermann, Phillip Sandoval, Braddock Bulos, Maya L. Iaconelli, Jonathan Chatterjee, Arnab K. Wiseman, R. Luke Schultz, Peter G. Bollong, Michael J. Proc Natl Acad Sci U S A Biological Sciences KEAP1 (Kelch-like ECH-associated protein), a cytoplasmic repressor of the oxidative stress responsive transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), senses the presence of electrophilic agents by modification of its sensor cysteine residues. In addition to xenobiotics, several reactive metabolites have been shown to covalently modify key cysteines on KEAP1, although the full repertoire of these molecules and their respective modifications remain undefined. Here, we report the discovery of sAKZ692, a small molecule identified by high-throughput screening that stimulates NRF2 transcriptional activity in cells by inhibiting the glycolytic enzyme pyruvate kinase. sAKZ692 treatment promotes the buildup of glyceraldehyde 3-phosphate, a metabolite which leads to S-lactate modification of cysteine sensor residues of KEAP1, resulting in NRF2-dependent transcription. This work identifies a posttranslational modification of cysteine derived from a reactive central carbon metabolite and helps further define the complex relationship between metabolism and the oxidative stress-sensing machinery of the cell. National Academy of Sciences 2023-05-08 2023-05-16 /pmc/articles/PMC10193962/ /pubmed/37155889 http://dx.doi.org/10.1073/pnas.2300763120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Ko, Yeonjin Hong, Mannkyu Lee, Seungbeom Kumar, Manoj Ibrahim, Lara Nutsch, Kayla Stanton, Caroline Sondermann, Phillip Sandoval, Braddock Bulos, Maya L. Iaconelli, Jonathan Chatterjee, Arnab K. Wiseman, R. Luke Schultz, Peter G. Bollong, Michael J. S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling |
title | S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling |
title_full | S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling |
title_fullStr | S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling |
title_full_unstemmed | S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling |
title_short | S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling |
title_sort | s-lactoyl modification of keap1 by a reactive glycolytic metabolite activates nrf2 signaling |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193962/ https://www.ncbi.nlm.nih.gov/pubmed/37155889 http://dx.doi.org/10.1073/pnas.2300763120 |
work_keys_str_mv | AT koyeonjin slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT hongmannkyu slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT leeseungbeom slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT kumarmanoj slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT ibrahimlara slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT nutschkayla slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT stantoncaroline slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT sondermannphillip slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT sandovalbraddock slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT bulosmayal slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT iaconellijonathan slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT chatterjeearnabk slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT wisemanrluke slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT schultzpeterg slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling AT bollongmichaelj slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling |