Cargando…

S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling

KEAP1 (Kelch-like ECH-associated protein), a cytoplasmic repressor of the oxidative stress responsive transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), senses the presence of electrophilic agents by modification of its sensor cysteine residues. In addition to xenobiotics, seve...

Descripción completa

Detalles Bibliográficos
Autores principales: Ko, Yeonjin, Hong, Mannkyu, Lee, Seungbeom, Kumar, Manoj, Ibrahim, Lara, Nutsch, Kayla, Stanton, Caroline, Sondermann, Phillip, Sandoval, Braddock, Bulos, Maya L., Iaconelli, Jonathan, Chatterjee, Arnab K., Wiseman, R. Luke, Schultz, Peter G., Bollong, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193962/
https://www.ncbi.nlm.nih.gov/pubmed/37155889
http://dx.doi.org/10.1073/pnas.2300763120
_version_ 1785043921351475200
author Ko, Yeonjin
Hong, Mannkyu
Lee, Seungbeom
Kumar, Manoj
Ibrahim, Lara
Nutsch, Kayla
Stanton, Caroline
Sondermann, Phillip
Sandoval, Braddock
Bulos, Maya L.
Iaconelli, Jonathan
Chatterjee, Arnab K.
Wiseman, R. Luke
Schultz, Peter G.
Bollong, Michael J.
author_facet Ko, Yeonjin
Hong, Mannkyu
Lee, Seungbeom
Kumar, Manoj
Ibrahim, Lara
Nutsch, Kayla
Stanton, Caroline
Sondermann, Phillip
Sandoval, Braddock
Bulos, Maya L.
Iaconelli, Jonathan
Chatterjee, Arnab K.
Wiseman, R. Luke
Schultz, Peter G.
Bollong, Michael J.
author_sort Ko, Yeonjin
collection PubMed
description KEAP1 (Kelch-like ECH-associated protein), a cytoplasmic repressor of the oxidative stress responsive transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), senses the presence of electrophilic agents by modification of its sensor cysteine residues. In addition to xenobiotics, several reactive metabolites have been shown to covalently modify key cysteines on KEAP1, although the full repertoire of these molecules and their respective modifications remain undefined. Here, we report the discovery of sAKZ692, a small molecule identified by high-throughput screening that stimulates NRF2 transcriptional activity in cells by inhibiting the glycolytic enzyme pyruvate kinase. sAKZ692 treatment promotes the buildup of glyceraldehyde 3-phosphate, a metabolite which leads to S-lactate modification of cysteine sensor residues of KEAP1, resulting in NRF2-dependent transcription. This work identifies a posttranslational modification of cysteine derived from a reactive central carbon metabolite and helps further define the complex relationship between metabolism and the oxidative stress-sensing machinery of the cell.
format Online
Article
Text
id pubmed-10193962
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-101939622023-11-08 S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling Ko, Yeonjin Hong, Mannkyu Lee, Seungbeom Kumar, Manoj Ibrahim, Lara Nutsch, Kayla Stanton, Caroline Sondermann, Phillip Sandoval, Braddock Bulos, Maya L. Iaconelli, Jonathan Chatterjee, Arnab K. Wiseman, R. Luke Schultz, Peter G. Bollong, Michael J. Proc Natl Acad Sci U S A Biological Sciences KEAP1 (Kelch-like ECH-associated protein), a cytoplasmic repressor of the oxidative stress responsive transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), senses the presence of electrophilic agents by modification of its sensor cysteine residues. In addition to xenobiotics, several reactive metabolites have been shown to covalently modify key cysteines on KEAP1, although the full repertoire of these molecules and their respective modifications remain undefined. Here, we report the discovery of sAKZ692, a small molecule identified by high-throughput screening that stimulates NRF2 transcriptional activity in cells by inhibiting the glycolytic enzyme pyruvate kinase. sAKZ692 treatment promotes the buildup of glyceraldehyde 3-phosphate, a metabolite which leads to S-lactate modification of cysteine sensor residues of KEAP1, resulting in NRF2-dependent transcription. This work identifies a posttranslational modification of cysteine derived from a reactive central carbon metabolite and helps further define the complex relationship between metabolism and the oxidative stress-sensing machinery of the cell. National Academy of Sciences 2023-05-08 2023-05-16 /pmc/articles/PMC10193962/ /pubmed/37155889 http://dx.doi.org/10.1073/pnas.2300763120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Ko, Yeonjin
Hong, Mannkyu
Lee, Seungbeom
Kumar, Manoj
Ibrahim, Lara
Nutsch, Kayla
Stanton, Caroline
Sondermann, Phillip
Sandoval, Braddock
Bulos, Maya L.
Iaconelli, Jonathan
Chatterjee, Arnab K.
Wiseman, R. Luke
Schultz, Peter G.
Bollong, Michael J.
S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling
title S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling
title_full S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling
title_fullStr S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling
title_full_unstemmed S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling
title_short S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling
title_sort s-lactoyl modification of keap1 by a reactive glycolytic metabolite activates nrf2 signaling
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193962/
https://www.ncbi.nlm.nih.gov/pubmed/37155889
http://dx.doi.org/10.1073/pnas.2300763120
work_keys_str_mv AT koyeonjin slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT hongmannkyu slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT leeseungbeom slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT kumarmanoj slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT ibrahimlara slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT nutschkayla slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT stantoncaroline slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT sondermannphillip slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT sandovalbraddock slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT bulosmayal slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT iaconellijonathan slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT chatterjeearnabk slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT wisemanrluke slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT schultzpeterg slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling
AT bollongmichaelj slactoylmodificationofkeap1byareactiveglycolyticmetaboliteactivatesnrf2signaling