Cargando…
Implicit learning of convective organization explains precipitation stochasticity
Accurate prediction of precipitation intensity is crucial for both human and natural systems, especially in a warming climate more prone to extreme precipitation. Yet, climate models fail to accurately predict precipitation intensity, particularly extremes. One missing piece of information in tradit...
Autores principales: | Shamekh, Sara, Lamb, Kara D., Huang, Yu, Gentine, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193982/ https://www.ncbi.nlm.nih.gov/pubmed/37155849 http://dx.doi.org/10.1073/pnas.2216158120 |
Ejemplares similares
-
Significant Amplification of Instantaneous Extreme Precipitation With Convective Self‐Aggregation
por: Da Silva, Nicolas A., et al.
Publicado: (2021) -
Mesoscale convective clustering enhances tropical precipitation
por: Angulo-Umana, Pedro, et al.
Publicado: (2023) -
Deep learning to represent subgrid processes in climate models
por: Rasp, Stephan, et al.
Publicado: (2018) -
Early warm-season mesoscale convective systems dominate soil moisture–precipitation feedback for summer rainfall in central United States
por: Hu, Huancui, et al.
Publicado: (2021) -
Changing Degree of Convective Organization as a Mechanism for Dynamic Changes in Extreme Precipitation
por: Pendergrass, Angeline G.
Publicado: (2020)