Cargando…

Recent Advances in Electrochemical-Based Silicon Production Technologies with Reduced Carbon Emission

Sustainable and low-carbon-emission silicon production is currently one of the main focuses for the metallurgical and materials science communities. Electrochemistry, considered a promising strategy, has been explored to produce silicon due to prominent advantages: (a) high electricity utilization e...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Feng, Pang, Zhongya, Hu, Shen, Zhang, Xueqiang, Wang, Fei, Nie, Wei, Xia, Xuewen, Li, Guangshi, Hsu, Hsien-Yi, Xu, Qian, Zou, Xingli, Ji, Li, Lu, Xionggang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10194053/
https://www.ncbi.nlm.nih.gov/pubmed/37214200
http://dx.doi.org/10.34133/research.0142
Descripción
Sumario:Sustainable and low-carbon-emission silicon production is currently one of the main focuses for the metallurgical and materials science communities. Electrochemistry, considered a promising strategy, has been explored to produce silicon due to prominent advantages: (a) high electricity utilization efficiency; (b) low-cost silica as a raw material; and (c) tunable morphologies and structures, including films, nanowires, and nanotubes. This review begins with a summary of early research on the extraction of silicon by electrochemistry. Emphasis has been placed on the electro-deoxidation and dissolution–electrodeposition of silica in chloride molten salts since the 21st century, including the basic reaction mechanisms, the fabrication of photoactive Si films for solar cells, the design and production of nano-Si and various silicon components for energy conversion, as well as storage applications. Besides, the feasibility of silicon electrodeposition in room-temperature ionic liquids and its unique opportunities are evaluated. On this basis, the challenges and future research directions for silicon electrochemical production strategies are proposed and discussed, which are essential to achieve large-scale sustainable production of silicon by electrochemistry.