Cargando…
PDDD-PreTrain: A Series of Commonly Used Pre-Trained Models Support Image-Based Plant Disease Diagnosis
Plant diseases threaten global food security by reducing crop yield; thus, diagnosing plant diseases is critical to agricultural production. Artificial intelligence technologies gradually replace traditional plant disease diagnosis methods due to their time-consuming, costly, inefficient, and subjec...
Autores principales: | Dong, Xinyu, Wang, Qi, Huang, Qianding, Ge, Qinglong, Zhao, Kejun, Wu, Xingcai, Wu, Xue, Lei, Liang, Hao, Gefei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10194370/ https://www.ncbi.nlm.nih.gov/pubmed/37213546 http://dx.doi.org/10.34133/plantphenomics.0054 |
Ejemplares similares
-
Knowledge Distillation Facilitates the Lightweight and Efficient Plant Diseases Detection Model
por: Huang, Qianding, et al.
Publicado: (2023) -
To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy
por: Srinivasan, Vignesh, et al.
Publicado: (2022) -
Comparison of the cost effectiveness of pre-service training and in-service training in Ethiopia
por: Berhe, Habtamu, et al.
Publicado: (2014) -
Autonomous Face Classification Online Self-Training System Using Pretrained ResNet50 and Multinomial Naïve Bayes
por: Maciura, Łukasz, et al.
Publicado: (2023) -
An Improved Math Word Problem (MWP) Model Using Unified Pretrained Language Model (UniLM) for Pretraining
por: Zhang, Dongqiu, et al.
Publicado: (2022)