Cargando…

Analysis of fluoro based pyrazole analogues as a potential therapeutics candidate against Japanese encephalitis virus infection

Japanese encephalitis virus (JEV) is the leading causative agent of encephalitis and its associated mortality among children. JEV modulates host cell machinery for its advantage, such as oxidative damage which subsequently leads to stress responsive pathways. The present study analyzes new series of...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Anjali, Gawandi, Sinthiya, Vandna, Yadav, Inderjeet, Mohan, Hari, Desai, Vidya G, Kumar, Sachin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10194371/
https://www.ncbi.nlm.nih.gov/pubmed/36202293
http://dx.doi.org/10.1016/j.virusres.2022.198955
Descripción
Sumario:Japanese encephalitis virus (JEV) is the leading causative agent of encephalitis and its associated mortality among children. JEV modulates host cell machinery for its advantage, such as oxidative damage which subsequently leads to stress responsive pathways. The present study analyzes new series of dinitroaryl substituted derivatives (1a-1f), containing pyrazole moiety and explores its potential ensuing anti-JEV activity. Out of all synthesized derivatives, compounds 1b and 1f were selected based on minimal cytotoxicity. In vitro inhibition of more than 70% and 90% were observed with compounds 1b and 1f, respectively, in neuronal cells. Dose-response analyses highlighted 1f exhibiting better antiviral activity than 1b. The mice treated with compound 1b or 1f did not show any noticeable toxicity at a dose of 100mg/kg/day when administered intraperitoneally till 96(th) h. Inhibition of up to 41% and 70% JEV mRNA in spleen and 33% to 43% in brain tissue was observed with compounds 1b and 1f, respectively. Both the compounds suppressed JEV induced ROS generation by up-regulating the NQO1 and HO-1 proteins. Our result suggests the interlocked positive feedback loops of NRF2-SQSTM1 signaling pathway to be regulated by the synthesized compounds. The potential of these compounds can be further tested for broad-spectrum antiviral effects with other flaviviruses in the path towards the development of therapeutics.