Cargando…
Search for key genes, key signaling pathways, and immune cell infiltration in uterine fibroids by bioinformatics analysis
Uterine fibroids grow in the myometrium and are benign tumors. The etiology and molecular mechanism are not fully understood. Here, we hope to study the potential pathogenesis of uterine fibroids by bioinformatics. Our aim is to search for the key genes, signaling pathways and immune infiltration ab...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10194444/ https://www.ncbi.nlm.nih.gov/pubmed/37335740 http://dx.doi.org/10.1097/MD.0000000000033815 |
Sumario: | Uterine fibroids grow in the myometrium and are benign tumors. The etiology and molecular mechanism are not fully understood. Here, we hope to study the potential pathogenesis of uterine fibroids by bioinformatics. Our aim is to search for the key genes, signaling pathways and immune infiltration about the development of uterine fibroids. The GSE593 expression profile was downloaded from the Gene Expression Omnibus database, which contains 10 samples, including 5 uterine fibroids samples and 5 normal controls. Bioinformatics methods were used to find differentially expressed genes (DEGs) in tissues and further analyze the DEGs. R (version 4.2.1) software was used for Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analysis of DEGs in uterine leiomyoma tissues and normal control. STRING database was used to generate protein-protein interaction (PPI) networks of key genes. Then, CIBERSORT was used to assess the infiltration of immune cells in uterine fibroids. A total of 834 DEGs were identified, of which 465 were up-regulated and 369 were down-regulated. GO andKEGG pathway analysis showed that the DEGs were mainly concentrated in extracellular matrix and cytokine related signaling pathways. We identified 30 key genes in DEGs from the PPI network. There were some differences in infiltration immunity between the 2 tissues. This study indicated that screening key genes, signaling pathways and immune infiltration by comprehensive bioinformatics analysis is helpful to understand the molecular mechanism of uterine fibroids and provide new insights into understanding the molecular mechanism. |
---|